Statistics in Climate and Environment

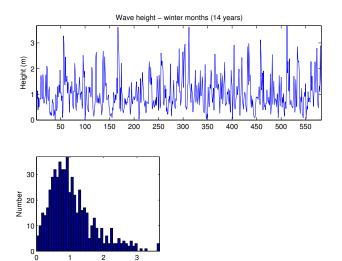
Johan Lindström

1 October 2014

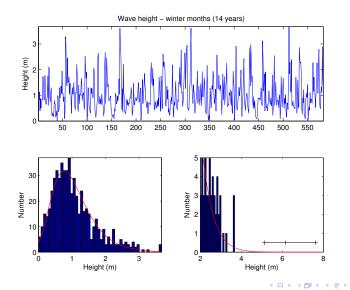
э

3 > < 3 >

Goeree-Overflakkee, Netherlands, February 1953



æ


◆□ > ◆圖 > ◆臣 > ◆臣 >

How large waves should we expect?

Height (m)

How large waves should we expect?

Today the Netherlands uses an expected 1250–year wave to calculate the safety margin when building new dams. For our data: 6.15 m (5.12,7.63)

- Extreme weather
- Damages and loads
- Insurance industry

Course	Name	Points
MASM15	Stat. Model. of Extreme Values	7.5
MASM23	Stat. Model. of Multivariate Extremes	7.5

Today the Netherlands uses an expected 1250-year wave to calculate the safety margin when building new dams. For our data: 6.15 m (5.12,7.63)

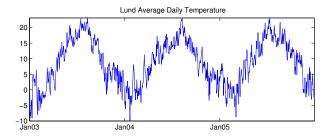
- Extreme weather
- Damages and loads
- Insurance industry

Course	Name	Points
MASM15	Stat. Model. of Extreme Values	7.5
MASM23	Stat. Model. of Multivariate Extremes	7.5

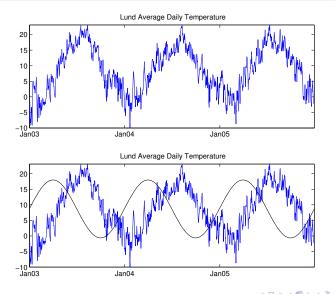
Today the Netherlands uses an expected 1250–year wave to calculate the safety margin when building new dams. For our data: 6.15 m (5.12,7.63)

- Extreme weather
- Damages and loads
- Insurance industry

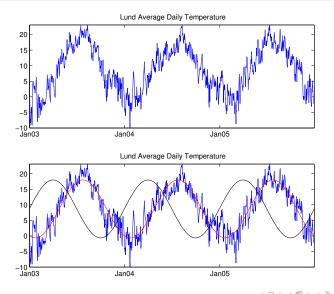
Course	Name	Points
MASM15	Stat. Model. of Extreme Values	7.5
MASM23	Stat. Model. of Multivariate Extremes	7.5

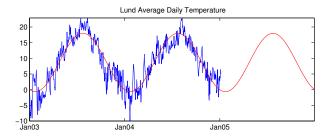

Today the Netherlands uses an expected 1250-year wave to calculate the safety margin when building new dams. For our data: 6.15 m (5.12,7.63)

- Extreme weather
- Damages and loads
- Insurance industry

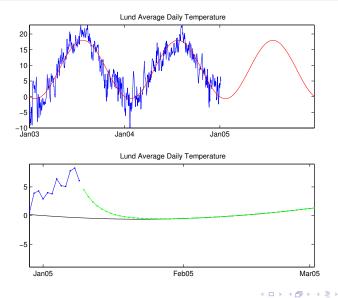

Course	Name	Points
MASM15	Stat. Model. of Extreme Values	7.5
MASM23	Stat. Model. of Multivariate Extremes	7.5

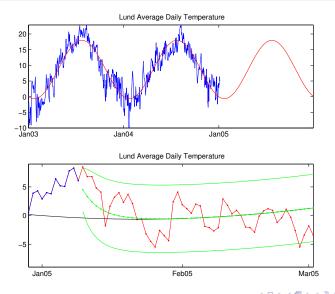
< A


Modelling of Temperature


Modelling of Temperature

Modelling of Temperature


Temperature Prediction


э

E

Temperature Prediction

Temperature Prediction

Time Series Data

Predictions of outdoor temperature can be used to estimate the need for district heating (fjärrvärme).

Time series data has many different applications:

- Weather data
- Consumption of electricity, district heating
- EKG-signals
- Financial data

Course	Name	Points
MASC04	Stationary Stochastic Processes	7.5
MASM17	Time Series Analysis	7.5
MASM26	Spectral Analysis ¹	7.5
MASM12	Non-linear Time Series Analysis ²	7.5

¹Given 2016 ²Civen 2014

Given 2014

Time Series Data

Predictions of outdoor temperature can be used to estimate the need for district heating (fjärrvärme).

Time series data has many different applications:

- Weather data
- Consumption of electricity, district heating
- EKG-signals
- Financial data

Course	Name	Points
MASC04	Stationary Stochastic Processes	7.5
MASM17	Time Series Analysis	7.5
MASM26	Spectral Analysis ¹	7.5
MASM12	Non-linear Time Series Analysis ²	7.5

Time Series Data

Predictions of outdoor temperature can be used to estimate the need for district heating (fjärrvärme).

Time series data has many different applications:

- Weather data
- Consumption of electricity, district heating
- EKG-signals
- Financial data

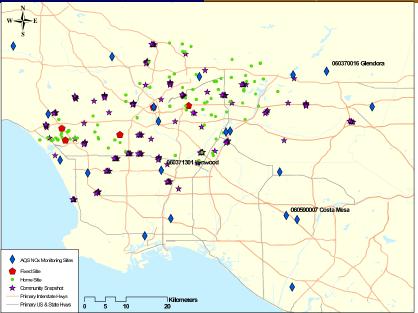
Course	Name	Points
MASC04	Stationary Stochastic Processes	7.5
MASM17	Time Series Analysis	7.5
MASM26	Spectral Analysis ¹	7.5
MASM12	Non-linear Time Series Analysis ²	7.5
	_	

¹Given 2016

²Given 2014

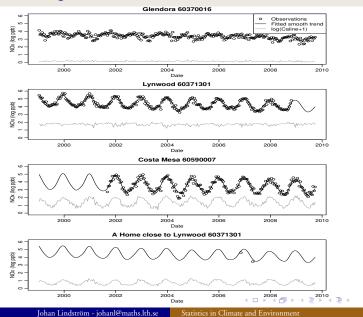
Multi-Ethnic Study of Atherosclerosis — Air pollution

"The purpose of the MESA Air Pollution study is to relate how the amount of air pollution you breathe may be related to early stages of heart diseases and diseases of the blood vessels and lung."


- ► EPA funded study to investigate the relationship between air pollution and cardiovascular disease .
- $ightarrow > 6\ 000\ people\ studied\ for\ 10+\ years.$
- 6 metropolitan areas (Baltimore, Chicago, Los Angeles, Minneapolis–St. Paul, New York, Winston–Salem).
- ▶ Main concern PM_{2.5} and NO_x.

Multi-Ethnic Study of Atherosclerosis — Air pollution

"The purpose of the MESA Air Pollution study is to relate how the amount of air pollution you breathe may be related to early stages of heart diseases and diseases of the blood vessels and lung."


- ► EPA funded study to investigate the relationship between air pollution and cardiovascular disease .
- $ightarrow > 6\ 000$ people studied for 10+ years.
- 6 metropolitan areas (Baltimore, Chicago, Los Angeles, Minneapolis–St. Paul, New York, Winston–Salem).
- Main concern PM_{2.5} and NO_x.

æ

◆□ > ◆圖 > ◆臣 > ◆臣 >

Data — Los Angeles

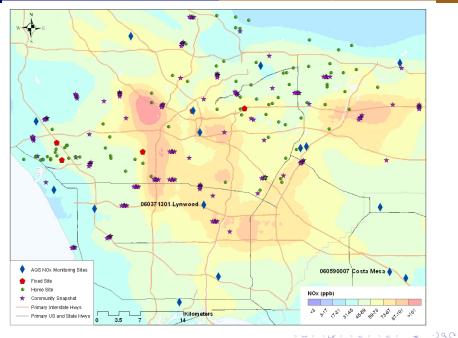
Data — Los Angeles

A number of features that a model needs to capture:

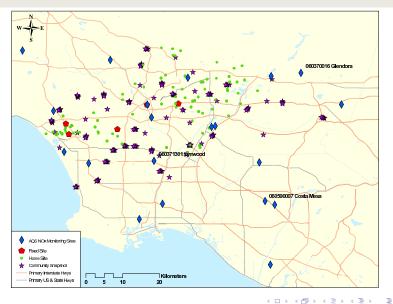
- Mean level varies among locations.
- Seasonal structure has different amplitude (differs between coastal and inland locations).
- Decreasing trend during the 10 years.

A large number of possible explanatory variables are available:

- Distance to coast
- Distance to major roads
- Population density

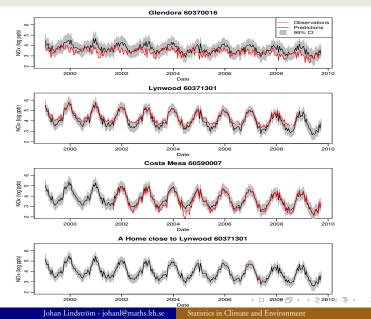

Data — Los Angeles

A number of features that a model needs to capture:


- Mean level varies among locations.
- Seasonal structure has different amplitude (differs between coastal and inland locations).
- Decreasing trend during the 10 years.

A large number of possible explanatory variables are available:

- Distance to coast
- Distance to major roads
- Population density


Model Validation

୬ **୯** (~ 14/17

590

Model Validation

Data in space

- Climate and Environmental data
- Satellite images
- Medical imaging

Course	Name	Points
MASM25	Spatial Statistics with Image Analysis	7.5
MASM11	Monte Carlo Methods for Inference	7.5

э

ヨト・ヨト

Data in space

- Climate and Environmental data
- Satellite images
- Medical imaging

Course	Name	Points
MASM25	Spatial Statistics with Image Analysis	7.5
MASM11	Monte Carlo Methods for Inference	7.5

э

ヨト・ヨト

Questions?

E

ヘロト 人間 トイヨト 人間ト