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Abstract. We consider a fully discretized numerical scheme for parabolic stochastic partial dif-

ferential equations with multiplicative noise. Our abstract framework can be applied to formulate

a non-iterative domain decomposition approach. Such methods can help to parallelize the code
and therefore lead to a more efficient implementation. The domain decomposition is integrated

through the Douglas–Rachford splitting scheme, where one split operator acts on one part of the

domain. For an efficient space discretization of the underlying equation, we chose the discontinuous
Galerkin method as this suits the parallelization strategy well. For this fully discretized scheme,

we provide a strong space-time convergence result. We conclude the manuscript with numerical

experiments validating our theoretical findings.

1. Introduction

In this paper, we aim to develop an efficient numerical approximation for a class of stochastic
partial differential equations (SPDEs) with multiplicative noise, which take the form:

(1.1)

{
dX(t) = [−AX(t) + f(t,X(t))] dt+B(t,X(t)) dW (t), t ∈ (0, tf ],

X(0) = X0.

Here, X(t) evolves in a real Hilbert space H up to a finite time tf . In this class of equations, A is
a linear, typically unbounded operator on the Hilbert space H, while the drift term f(t,X(t)) and
the diffusion term B(t,X(t)) are possibly nonlinear but assumed to be Lipschitz continuous with
respect to X(t). Examples of semi-linear SPDEs include phase-field models, the Nagumo equation,
and fluid flow problems (see [28] for comparison). In these models, the noise can represent small-
scale structures arising from thermal fluctuations, which are absent in deterministic models, it can
account for the variability in wave speed or stochastic forcing.

SPDEs are an important class of equations because stochastic noise can enhance the underlying
model, making it more realistic. Given their relevance in various applications, studying efficient
numerical approximation methods for SPDEs is crucial. While these types of equations have gained
increased attention in recent years, their numerical approximation still lags behind that of their
deterministic counterparts. Our goal is to address this gap by developing a framework, which
includes numerical approximations using a domain decomposition approach for Equation (1.1).

Since stochastic equations typically exhibit lower regularity due to the presence of noise, we do
not focus on high-order methods, as they are unlikely to provide significant benefits in such low-
regularity settings. Instead, we aim to establish a theoretical foundation for an efficient numerical
approximation method that can be parallelized.
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Domain decomposition methods are powerful tools for solving partial differential equations. For
a general introduction, we refer the reader to [10,30,36,38]. These techniques divide a large problem
into several smaller subproblems, which can be computed in parallel, provided that appropriate com-
munication between subproblems is handled. There are various strategies for this communication.
One common approach involves iterative methods, where the subproblems are solved sequentially,
allowing for information exchange between them. This process continues until a desired error toler-
ance is achieved. However, while this method can yield accurate solutions, the iterative procedure
incurs additional computational costs. To avoid the overhead of iterative schemes, we incorporate
the decomposition directly into the time integration using an operator splitting method. Similar
non-iterative overlapping domain decomposition approaches for deterministic equations have been
studied in [2, 12, 13, 14, 18, 19, 31, 39]. By embedding the decomposition into the time integration
process, we aim to achieve efficient parallel computation without the need for costly iterative refine-
ments.

In the context of stochastic equations, less research has been conducted on domain decomposition
methods. A few works have explored this direction within the realm of random differential equations,
examples are [5, 33]. Our results are most comparable to those in [3, 4, 24]. In [4], the authors
focus on the stochastic heat equation, which is similar to our case, but with a more restrictive
setup. Specifically, our approach is more general regarding the operator A: we allow for a non-
selfadjoint operator without requiring it to have a compact inverse. Furthermore, our framework
accommodates a nonlinear perturbation f and multiplicative noise with a coefficient B. In contrast,
[24] examines the nonlinear Schrödinger equation, which belongs to a different class of problems.
The closest comparison to our work is [3], where the authors also propose a domain decomposition
method based on operator splitting. While this is conceptually similar to our approach, their focus
is on semi-discretization, whereas we present a full discretization, incorporating both time and
spatial discretization. This distinction enables us to perform a more comprehensive error analysis.
Additionally, our solution framework differs from theirs. This allows us to significantly lower spatial
regularity assumption. This ensures both theoretical robustness and practical efficiency in solving
the stochastic partial differential equations we consider.

For the time discretization, we use an implicit method with respect to the unbounded operator
A for stability reasons. As a result, solving implicit equations at each step of the time discretization
is necessary. Using the semi-implicit Euler method as a starting point with the initial condition
X0

τ = X0, the discretization takes on the following form

(I + τA)Xn
τ = Xn−1

τ + τf(tn−1, X
n−1
τ ) +B(tn−1, X

n−1
τ )(W (tn)−W (tn−1))

for n ∈ {1, . . . , N}. To expedite the solution of these implicit equations, we propose an operator
splitting method, decomposing the operator A into two linear operators A = A1 + A2. We em-
ploy a variant of the Douglas–Rachford splitting method, first introduced in [11]. This approach
approximates the backward Euler step (I + τA)−1 through

(I + τA)−1 = (I + τ(A1 +A2))
−1 ≈ (I + τA2)

−1(I + τA1)
−1(I + τ2A1A2).

A similar framework is explored in [18, 19], where convergence for fully discrete schemes using
Douglas–Rachford and Peaceman–Rachford splitting is analyzed for deterministic, homogeneous
equations. However, they assume bounds on the discrete operators, which can be challenging to
prove. We show how these bounds can be verified through assumptions that are easier to check
in practice. The Douglas–Rachford splitting scheme is a first-order method, similar to the well-
known Lie splitting method. Its advantage lies in the error structure. Our primary application
uses a decomposition of A through an overlapping domain decomposition, i.e. we decompose A into
operators A1 and A2, each acting on a portion of the domain. In this setting, the Douglas–Rachford
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splitting error is more evenly distributed and not as heavily concentrated in the overlap region as is
typical for the Lie splitting error. Including the splitting scheme in the time discretization, starting
from X0

τ = X0, we proceed as follows

(I+ τA1)(I+ τA2)X
n
τ = (I+ τ2A1A2)X

n−1
τ + τf(tn−1, X

n−1
τ )+B(tn−1, X

n−1
τ )(W (tn)−W (tn−1)),

where n ∈ {1, . . . , N}. Note that we will actually analyze a variant of this method with a different
first time step that has some better theoretical properties. For simplicity, we will stick to this
simplified version in the introduction.

The time discretization is combined with a spatial discretization. For the spatial discretization,
let Vh = span{φ1, . . . , φM(h)} be a finite dimensional subspace of H. Then, the fully discretized

solution Xn
h,τ =

∑M(h)
i=1 αn

i φi leads to the following algebraic system for the coefficients:

Mαn = (I + τAh,2)
−1(I + τAh,1)

−1(I + τ2Ah,1Ah,2)Mαn−1

+ (I + τAh,2)
−1(I + τAh,1)

−1
(
τfh(tn−1, X

n−1
h,τ ) +Bh(tn−1, X

n−1
h,τ )(W (tn)−W (tn−1))

)
,

where the mass matrix is given by (M)i,j = (φi, φj)H . An issue for parallelization arises when the
mass matrixM does not have a block structure. This block structure is even missing for the standard
finite element method, as M then becomes tridiagonal in the one dimensional case. This lack of
locality hinders efficient parallelization. While mass lumping can be a useful tool to diagonalize
the mass matrix, this typically requires high regularity assumptions on the solution that we cannot
expect in our setting. Therefore, we opt for a spatial discretization that yields a more suitable mass
matrix. Examples include spectral Galerkin methods and discontinuous Galerkin (dG) methods. We
will concentrate on dG as this does not require any knowledge on the eigenfunctions of A. Similar
space discretizations have been explored in [20, 21] for different problems. Despite our emphasis
on domain decomposition with dG methods, the convergence proof is general, and the assumptions
outlined in Section 3.1 allow for the application of other spatial discretizations and the splitting in
Section 3.2 does not have to be based on a domain decomposition. For the convergence analysis, we
use elements from the approach of [28], who proved convergence for SPDEs using a backward Euler
scheme. As splitting schemes need additional requirements for the error bound, it is to be expected
that our error bounds do not correspond with the non-split result. Nevertheless, we can provide
improved bounds under additional commutativity assumptions on A1 and A2, following a similar
strategy to [22].

The paper is organized as follows. In Section 2, we provide all the necessary assumptions on the
data of (1.1), state the solution concept and an existence and regularity result for such a solution.
With this in mind, we explain all the details for the full discretization in Section 3. This includes
a general spatial discretization framework and the temporal discretization with a variation of the
Douglas–Rachford splitting scheme. For this general framework, we then provide explicit error
bounds in Section 4. For the error bounds, we state some needed auxiliary results, which we then
combine to prove our main result in Theorems 4.10 and 4.12. Our main application of the theoretical
framework is then explained in detail in Section 5. We verify that dG fits in our general spatial
discretization framework and state a splitting of the operator needed for the Douglas–Rachford
splitting, which is based on a domain decomposition approach. This setting is then further considered
in our numerical example in Section 6 where we confirm our findings through tests. Finally, needed
auxiliary results are summarized in Appendices A–D.

2. Problem description

In the following section, we introduce the necessary notation and assumptions needed for Equa-
tion (1.1). We abbreviate R+ := (0,∞), R+

0 := [0,∞) and R−
0 := (−∞, 0]. Further, we assume that
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tf ∈ R+ is a given finite end time and (H, (·, ·)H , ∥ · ∥H) is a real Hilbert space. The underlying
filtered probability space for the stochastic equation is denoted by (Ω,F , {Ft}t∈[0,tf ],P), which sat-

isfies the usual conditions. In the following, the constant C ∈ R+ is generic and can change from
line to line, but it is always independent of the temporal and spatial discretization parameters, τ
and h, respectively. The possibly unbounded operator A in the parabolic Equation (1.1) fulfills the
following assumption.

Assumption 2.1. Let the linear operators A : dom(A) ⊂ H → H and Aℓ : dom(Aℓ) ⊂ H → H,
ℓ ∈ {1, 2}, be given such that A = A1 + A2 on dom(A1) ∩ dom(A2) ⊆ dom(A). Moreover, the
operators fulfill the following criteria.

(a) The operator A is a densely defined, positive operator on H. Furthermore, the operator A is
sectorial. That is there exists φ ∈ (0, π

2 ) such that the sector Sφ = {λ ∈ C : φ < | arg(λ)| ≤
π} and zero lie in the resolvent set ρ(A). More precisely, for all λ ∈ Sφ, it follows that

∥(A− λI)−1∥L(HC) ≤
C

|λ|
,

where HC is the complexification H + iH of the real space H.
(b) For ℓ ∈ {1, 2}, the operator AℓA

−1 : H → H is a well-defined, bounded operator.

Note that in this paper, we follow the same convention as in [28, Definition 1.75] for the definitions
of (non-)positive and (non-)negative operators. With the previous assumption in mind, we observe
that since A is sectorial there exists λ0 ∈ R−

0 such that the range of A − λ0I is H. Together
with the fact that −A is a positive (therefore also dissipative) operator the range condition implies
that the semigroup denoted by e−tA, t ∈ R+

0 , is a semigroup of contractions on H, compare [34,
Chapter 1.4, Theorem 4.3]. Since A is sectorial, the semigroup e−tA is also analytic, compare [34,
Chapter 1.5, Theorem 5.2]. Given −A generates an analytic semigroup and 0 ∈ ρ(A), we obtain
some useful bounds. For ζ ∈ R+, it follows that

(2.1) ∥Aζe−tA∥L(H) ≤ Ct−ζ for all t ∈ R+,

and for ζ ∈ (0, 1] it holds that

(2.2) ∥A−ζ(I − e−tA)∥L(H) ≤ Ctζ for all t ∈ R+.

For a proof of these results, we refer to [34, Chapter 2.6., Theorem 6.13]. A definition for the
fractional operators Aζ , ζ ∈ R+, used in the bounds can be found in [34, Chapter 2.6].

In the following assumptions, we choose parameters θ with corresponding indices that are con-
nected to the regularity of the coefficients. These parameters are fixed throughout the paper. When-
ever we use ζ ∈ R+

0 , this should be interpreted as a more general variable parameter that changes
depending on the context.

Assumption 2.2. For a fixed p ∈ [2,∞) and θX0 ∈ [0, 1), the initial condition X0 : Ω → H is a
F0-measurable random variable such that ∥AθX0X0∥Lp(Ω;H) ≤ C.

Next, we state the exact assumptions needed for the nonlinear perturbation f of Equation (1.1).

Assumption 2.3. Let f : R × H → H and θf ∈ [0, 1
2 ) be given. The following conditions are

fulfilled.

(a) For all v ∈ H and w ∈ dom(Aθf ), it follows that

∥f(t, v)∥H ≤ C
(
1 + ∥v∥H

)
and ∥Aθf f(t, w)∥H ≤ C

(
1 + ∥Aθfw∥H

)
.

(b) For all v, w ∈ H and s, t ∈ [0, tf ], it follows that

∥f(s, v)− f(t, w)∥H ≤ C
(
|s− t| 12 + ∥v − w∥H

)
.
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The next step is to define the setting for the stochastic part of Equation (1.1). First, we begin
with the Wiener noise W .

Assumption 2.4. Let the operator Q be a non-negative definite symmetric operator of trace class
on a Hilbert space (U, (·, ·)U , ∥ · ∥U ). Moreover, let {W (t)}t∈[0,tf ] be a given Q-Wiener process that
is adapted to the filtration {Ft}t∈[0,tf ].

For two Hilbert spaces H1 and H2, we denote the Hilbert space of Hilbert–Schmidt operators
by HS(H1, H2). This space is equipped with the norm ∥E∥HS(H1,H2) =

√
tr(E∗E), where tr is the

trace operator. In order to state the assumptions on the noise term, we first recall the definition of
the Cameron–Martin space, compare [28, Section 10.3]. For U0 = Q

1
2U , the Cameron–Martin space

L0
2 is given by the set of linear operators E : U0 → H that fulfill

∥E∥L0
2
:= ∥EQ

1
2 ∥HS(U,H) = ∥E∥HS(U0,H) < ∞.

Assumption 2.5. Let B : [0, tf ]×H → L0
2 and θB ∈ [0, 1

2 ) be given. The following conditions are
fulfilled.

(a) For all v ∈ H and w ∈ dom(AθB ), it follows that

(2.3) ∥B(t, v)∥L0
2
≤ C

(
1 + ∥v∥H

)
, ∥AθBB(t, w)∥L0

2
≤ C

(
1 + ∥AθBw∥H

)
and for all u ∈ dom(AθX0 )

(2.4) ∥B(t, u)∥L(U,H) ≤ C
(
1 + ∥AθX0u∥H

)
,

where θX0
is chosen as in Assumption 2.2.

(b) For all v, w ∈ H and s, t ∈ [0, tf ], it follows that

∥B(s, v)−B(t, w)∥L0
2
≤ C

(
|s− t| 12 + ∥v − w∥H

)
.

In this paper, we work with the mild solution of Equation (1.1). Under the assumptions stated
above, let us recall the solution concept. A predictable H-valued process {X(t)}t∈[0,tf ] is called a
mild solution if

P
(∫ tf

0

∥X(t)∥2H dt < +∞
)
= 1

and if for all t ∈ [0, tf ], it holds P-a.s. that

(2.5) X(t) = e−tAX0 +

∫ t

0

e−(t−s)Af(s,X(s)) ds+

∫ t

0

e−(t−s)AB(s,X(s)) dW (s).

Moreover, we recall that for B ∈ L2(0, tf ;L
p(Ω;L0

2)) the following Burkholder–Davis–Grundy in-
equality

(2.6)
(
E
[

sup
t∈(0,tf )

∥∥∥∫ t

0

B(s) dW (s)
∥∥∥p
H

]) 1
p ≤ C

(∫ tf

0

∥B(s)∥2Lp(Ω;L0
2)
ds

) 1
2

holds. For a proof, we refer to [27, Theorem 6.1.2]. With our assumptions, we have the following
existence and regularity result.

Theorem 2.6. Let Assumptions 2.1–2.5 be fulfilled. Then there exists a unique mild solution to
Equation (1.1) up to modifications. Assuming that θX0

∈ [θB , θB + 1
2 ), the solution fulfills the

following two regularity bounds

(2.7) sup
t∈(0,tf )

∥AθX0X(t)∥Lp(Ω;H) ≤ C
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and

(2.8) |X|
C

min(θX0
, 1
2
)
([0,tf ];Lp(Ω;H))

:= sup
s,t∈(0,tf ),s ̸=t

∥X(t)−X(s)∥Lp(Ω;H)

|t− s|min(θX0
, 12 )

≤ C.

Proof. For a proof, we refer to [23, Theorem 1] when choosing α = θB and r = 0. Note that this proof
only covers coefficients f and B that are independent of t. However, adding a time dependence as in
Assumptions 2.3 and 2.5 does not further complicate the proof. Compare also [25, Section 2.5–2.6],
where the coefficients are time dependent but the regularity assumptions are slightly different. □

3. Discretization

In the coming section, we provide a full discretization scheme for our underlying stochastic Equa-
tion (1.1). We begin by stating the setting for the spatial discretization in Section 3.1. With this
setting in mind, we can then add a time stepping method to obtain a fully discretized method in
Section 3.2. The final scheme is stated in (3.7).

3.1. Spatial discretization. For the space discretization, we choose a set {Vh}h∈I , I ⊂ R+, of
finite-dimensional subspaces of H. Recall that the constant C is always assumed to be independent
of the spatial discretization parameter h. Since Vh is a subset of the Hilbert space H, we can use
both the inner product (·, ·)H and its corresponding norm ∥ · ∥H on the space.

Assumption 3.1. The bounded projection operator Ph : H → Vh fulfills ∥(I−Ph)v∥H ≤ Ch2∥Av∥H
for all v ∈ dom(A).

Remark 3.2. Due to Assumption 3.1, we obtain

∥(I − Ph)A
−1∥L(H) ≤ Ch2 and ∥I − Ph∥L(H) ≤ C.

Together with the interpolation result from Lemma A.1, for ζ ∈ (0, 1), we then find that

∥(I − Ph)A
−ζ∥L(H) ≤ Ch2ζ or ∥(I − Ph)v∥H ≤ Ch2ζ∥Aζv∥H

for all v ∈ dom(Aζ).

On Vh, we state approximating operators to the continuous operators introduced in the previous
section. We begin with an approximation of the (unbounded) operator A and its split operators A1

and A2. We need the discretization of A to be positive and bounded with constants independent
of h w.r.t. a suitable norm in Vh. To state the needed assumptions for this, we introduce a second
norm ∥ · ∥Vh

on Vh, which is induced by an inner product (·, ·)Vh
and fulfills

(3.1) ∥vh∥H ≤ C∥vh∥Vh
for all vh ∈ Vh.

The idea is that this additional norm is a discrete counterpart to the typical norm on the variational
space V := dom(A

1
2 ).

Assumption 3.3. Let Assumptions 2.1 and 3.1 be fulfilled and let the norm ∥ · ∥Vh
be given as in

(3.1). Further, let the operators Ah, Ah,1, Ah,2 ∈ L(Vh) fulfill the following conditions.

(a) The operator Ah is strongly positive, i.e.

(Ahvh, vh)H ≥ C∥vh∥2Vh
for all vh ∈ Vh.

(b) The operator Ah is bounded w.r.t. ∥ · ∥Vh
in Vh. More precisely, it holds that∣∣(Ahvh, wh)H

∣∣ ≤ C∥vh∥Vh
∥wh∥Vh

for all vh, wh ∈ Vh.

(c) The operators fulfill Ah = Ah,1 +Ah,2 in Vh.
(d) The operators Ah,1 and Ah,2 are non-negative operators in Vh w.r.t. (·, ·)H .
(e) For ℓ ∈ {1, 2}, it holds that ∥Ah,ℓPh∥L(H) ≤ Ch−2.
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(f) For ℓ ∈ {1, 2}, it holds that

∥(PhAℓ −Ah,ℓPh)v∥H ≤ C∥Av∥H for all v ∈ dom(A).

(g) The operator Ah fulfills that ∥A−1 −A−1
h Ph∥L(H) ≤ Ch2.

In the following, we need the two bounds (2.1) and (2.2) also for the discretized operator Ah.
First, we show that the operator Ah is sectorial. On top of that, we need to verify that the constant
C in the inequalities (2.1) and (2.2) does not depend on h. To verify these properties, the spaces
X and Z from [42, Section 1.7.1] are chosen to be (Z, (·, ·)Z , ∥ · ∥Z) = (Vh, (·, ·)Vh

, ∥ · ∥Vh
) and

(X, (·, ·)X , ∥ · ∥X) = (Vh, (·, ·)H , ∥ · ∥H). This choice of space fits into the assumptions of [42,
Section 1.7.1]. Thus, with [42, Theorem 2.1] and Assumptions 3.3 (a)–(b) we obtain that Ah is
sectorial with an angle φh ∈ (π2 , π). It then follows that Ah is a densely defined, positive, sectorial
operator on Vh. Without loss of generality, we can always pick φh and φ from Assumption 2.1 (a)
such that both A and Ah are sectorial with the same angle that we refer to as φ in the following. The
constant to bound ∥(AhPh − λI)−1∥L(H) is then independent of h for λ ∈ Sφ. With this in mind,
we can now state the bounds (2.1) and (2.2) for Ah, where C is independent of h, compare [34,
Chapter 2.6., Theorem 6.13] or [42, Section 2.7.7] for a proof. More precisely, we have that for
ζ ∈ R+

(3.2) ∥Aζ
he

−tAhPh∥L(H) ≤ Ct−ζ for all t ∈ R+,

and for ζ ∈ [0, 1]

(3.3) ∥A−ζ
h (I − e−tAh)Ph∥L(H) ≤ Ctζ for all t ∈ R+.

For the discretizations of f and B, we add suitable projections to finite-dimensional subspaces. This
can be done as follows for the function f

(3.4) fh : [0, tf ]×H → Vh : (t, v) 7→ Phf(t, v).

Due to the projection properties, this function can easily compared to the original function. For the
discretized version of B, we need some additional assumptions that we summarize in the following.

Assumption 3.4. Let Assumption 2.4 be fulfilled, let θU ∈ [0, 1
2 ) given and let {ek}k∈N be the

eigenfunctions with their corresponding eigenvalues {qk}k∈N of Q that build an orthonormal basis
of U . For r ∈ R+

0 and ε ∈ R+, the eigenvalues fulfill qk = O(k−(2r+1+ε)). Further, let Uh be a finite-
dimensional subspace of U given by Uh = span{e1, . . . , eNU

} such that (NU +1)−r ≤ Ch2θU+1. The
orthogonal projection on Uh is denoted by

(3.5) PU : U → Uh.

With this in mind, we are now prepared to state the discretized version of the noise operator B

(3.6) Bh : [0, tf ]× U → HS(U0, Vh) : (t, v) 7→ PhB(t, v)PU .

Lemma 3.5. Let Assumptions 2.1, 2.3, 2.5, 3.1, and 3.4 be fulfilled and let fh and Bh be given as
in (3.4) and (3.6), respectively. For all u ∈ dom(AθX0 ), v, w ∈ H and s, t ∈ [0, tf ], it follows that

(i) ∥fh(s, v)− fh(t, w)∥H ≤ C
(
|s− t| 12 + ∥v − w∥H

)
;

(ii) ∥PhB(t, u)−Bh(t, u)∥L0
2
≤ Ch2θU+1

(
1 + ∥AθX0u∥H

)
;

(iii) ∥Bh(s, v)−Bh(t, w)∥L0
2
≤ C

(
|s− t| 12 + ∥v − w∥H

)
.

Proof. First, we observe that (i) follows by an application of Assumption 2.3 (b)

∥fh(s, v)− fh(t, w)∥H =
∥∥Ph

(
f(s, v)− f(t, w)

)∥∥
H

≤ C
(
|s− t| 12 + ∥v − w∥H

)
.
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For the proof of (ii), we apply Assumption 2.5 (a) and obtain

∥PhB(t, u)−Bh(t, u)∥L0
2
= ∥PhB(t, u)(I − PU )∥L0

2
≤ ∥B(t, u)∥L(U,H)∥(I − PU )Q

1
2 ∥HS(U,U)

≤ C(1 + ∥AθX0u∥H)∥(I − PU )Q
1
2 ∥HS(U,U).

We then obtain the claimed result by combining the previous bound with

∥(I − PU )Q
1
2 ∥HS(U,U) =

( ∞∑
k=NU+1

qk

) 1
2 ≤ C

( ∞∑
k=NU+1

k−(2r+1+ε)
) 1

2

≤ (NU + 1)−r
( ∞∑

k=NU+1

k−(1+ε)
) 1

2 ≤ Ch2θU+1,

where we applied Assumption 3.4. The last remaining step is to prove (iii). This can be done using
Assumption 2.5 (b) and the fact that the norm of a projection operator is less than one, which yields

∥Bh(s, v)−Bh(t, w)∥L0
2
= ∥PhB(s, v)PU − PhB(t, w)PU∥L0

2

≤ ∥B(s, v)−B(t, w)∥L0
2
≤ C

(
|s− t| 12 + ∥v − w∥L0

2

)
.

□

3.2. Temporal discretization. The temporal discretization method that we add to the spatial
discretization from the previous subsection is a Douglas–Rachford splitting method. In this method,
we decompose the operator Ah into two parts Ah,1 and Ah,2 with Ah = Ah,1 +Ah,2. Here, we solve
two sub-steps containing Ah,1 and Ah,2 instead of one step only containing Ah. The advantage is
that when the numerical method is parallelized less communication is needed between processors.

First, let us fix the notation used on the temporal discretization in the paper. We choose an
equidistant time grid with tn = nτ and a step size τ =

tf
N for N ∈ N and n ∈ {0, . . . , N}. We now

state Xn
h,τ to approximate the exact solution X(tn) at a grid point tn, n ∈ {1, . . . , N},

(3.7)


X0

h,τ = PhX0,

X1
h,τ = (I + τAh,2)

−1(I + τAh,1)
−1

(
X0

h,τ + τfh(t0, X
0
h,τ ) +Bh(t0, X

0
h,τ )W (t1)

)
,

Xn
h,τ = Sh,τX

n−1
h,τ + (I + τAh,2)

−1(I + τAh,1)
−1

(
τfh(tn−1, X

n−1
h,τ )

+Bh(tn−1, X
n−1
h,τ )(W (tn)−W (tn−1))

)
where n ∈ {2, . . . , N} and

(3.8) Sh,τ = (I + τAh,2)
−1(I + τAh,1)

−1(I + τ2Ah,1Ah,2).

The inverse operators (I + τAh,1)
−1 and (I + τAh,2)

−1 are indeed well-defined. Due to the non-
negativity of Ah,1 and Ah,2 and the fact that they act on finite-dimensional spaces, it follows that
−Ah,1 and −Ah,2 generate semigroups of contraction, and therefore the inverses are well-defined.
Moreover, both ∥(I + τAh,1)

−1Ph∥L(H) and ∥(I + τAh,2)
−1Ph∥L(H) are bounded by 1, compare [34,

Theorem 3.1].
Note that we approximate e−τAh by (I + τAh,2)

−1(I + τAh,1)
−1 in the first temporal step and

by Sh,τ in all coming steps. The reason for this is that Sh,τ in the first step leads to a CFL-type
condition. Our approximation requires less regularity in the initial value compared to Sn

h,τ and offers
a simple error recursion.

We can argue inductively that Xn
h,τ is Ftn -measurable for every n ∈ {1, . . . , N}. First, we

observe that the initial value is Ft0 = F0-measurable and an element of Lp(Ω;H) (Assumption 2.2).
Assuming that Xn−1

h,τ is Ftn−1
-measurable, it follows that Xn

h,τ is Ftn-measurable as a composition of

an Ftn−1-measurable function and the Ftn -measurable increment W (tn)−W (tn−1). Moreover, Xn
h,τ
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is an element of Lp(Ω;H) as the operators Sn
h,τ (I+τAh,2)

−1Ph, (I+τAh,2)
−1Ph and (I+τAh,1)

−1Ph

are bounded on H; compare Lemma 4.2 below.

Remark 3.6. When implementing the scheme, this method can be rewritten for more efficiency.
Using the transformation Xn

h,τ = (I + τAh,2)
−1Y n

h,τ , the method (3.7) is equivalent to
Y 1
h,τ = (I + τAh,1)

−1X0
h,τ + (I + τAh,1)

−1
(
τfh(0, Y

0
h,τ ) +Bh(0, Y

0
h,τ )W (t1)

)
,

Y n
h,τ = (I + τAh,1)

−1
(
(2(I + τAh,2)

−1 − I)Y n−1
h,τ + τfh(tn−1, Y

n−1
h,τ )

+Bh(tn−1, Y
n−1
h,τ )(W (tn)−W (tn−1))

)
+ (I − (I + τAh,2)

−1)Y n−1
h,τ , n ∈ {2, . . . , N}.

When comparing the Douglas–Rachford spitting to the Lie splitting, the additional quadratic term
I + τ2Ah,1Ah,2 appears in the former, compare (3.8). The advantage of this reformulation is that
this quadratic term does not have to be evaluated, avoiding an extra matrix multiplication. This
means that we do not need to evaluate more matrix operations compared to the simpler Lie splitting
method. In the semi-discrete setting, the quadratic term is problematic from a regularity point of
view. Additionally, in a full discretization the product Ah,1Ah,2 is of the order h

−4. In the alternative
formulation, such a term does not appear.

To obtain the Xn
h,τ -terms, we only need to calculate (I + τAh,2)

−1Y n
h,τ . Note since we compute

(I+ τAh,2)
−1Y n

h,τ within every step, we obtain every Xn
h,τ , which we therefore can save without any

additional computations.

4. Convergence analysis

We can now turn to the main analytical results of this paper. In the coming section, we prove
explicit bounds for the error of our numerical scheme (3.7) in Theorem 4.10 and 4.12 To provide
this result we begin with some auxiliary statements collected in the coming lemmas. In Section 4.1,
we state some useful results from terms that appear in the error bound. These can then be used
in the results in the following subsection. In Section 4.2, we begin by looking more closely at three
different error parts: the error stemming from the initial condition, the error from the drift term,
and the error obtained by the diffusion term. These three error parts can then be combined into the
main result at the end of the subsection.

4.1. Basic estimates. We begin to provide two basic results about certain operator products to
stay bounded. This helps to shift around certain operators and prove the desired bounds.

Lemma 4.1. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled. Then it follows that

(i) ∥AhPhA
−1∥L(H) ≤ C;

(ii) ∥Ah,ℓA
−1
h Ph∥L(H) ≤ C.

Proof. To prove (i), we insert Assumptions 3.3 (e) and (g) and obtain

∥AhPhA
−1∥L(H) ≤

∥∥AhPh(A
−1 −A−1

h Ph)
∥∥
L(H)

+ ∥Ph∥L(H) ≤ Ch−2h2 + 1.

For (ii), we use Assumptions 3.3 (e)–(g) and 2.1 (b) to find

∥Ah,ℓA
−1
h Ph∥L(H)

≤
∥∥Ah,ℓ

(
A−1

h Ph − PhA
−1

)∥∥
L(H)

+ ∥Ah,ℓPhA
−1∥L(H)

≤ ∥Ah,ℓPh∥L(H)

∥∥A−1
h Ph −A−1

∥∥
L(H)

+
∥∥(Ah,ℓPh − PhAℓ)A

−1
∥∥
L(H)

+ ∥PhAℓA
−1∥L(H)

≤ Ch−2h2 + C + ∥AℓA
−1∥L(H) ≤ C.

□
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The following bound shows that the norm of Sn
h,τ (I+τAh,2)

−1 is bounded by one for every n ∈ N.
Note that we include (I + τAh,2)

−1 to handle the quadratic term.

Lemma 4.2. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled. Further, let Sh,τ be given as in (3.8).
Then for every n ∈ N, it follows that

∥Sn
h,τ (I + τAh,2)

−1∥L(H) ≤ 1.

Proof. The proof is inspired by some arguments from [18, Lemma 3.1]. First, we rewrite Sn
h,τ (I +

τAh,2)
−1 as follows

Sn
h,τ (I + τAh,2)

−1 =
(
(I + τAh,2)

−1(I + τAh,1)
−1(I + τ2Ah,1Ah,2)

)n
(I + τAh,2)

−1

= (I + τAh,2)
−1

(
(I + τAh,1)

−1(I + τ2Ah,1Ah,2)(I + τAh,2)
−1

)n
= (I + τAh,2)

−1
(1
2
(I + τAh,1)

−1
(
(I − τAh,1)(I − τAh,2)

+ (I + τAh,1)(I + τAh,2)
)
(I + τAh,2)

−1
)n

= (I + τAh,2)
−1

(1
2
(I + τAh,1)

−1(I − τAh,1)(I − τAh,2)(I + τAh,2)
−1 +

1

2
I
)n

.(4.1)

In the next step, we show that the operators (I + τAh,1)
−1(I − τAh,1)Ph and (I − τAh,2)(I +

τAh,2)
−1Ph are non-expansive. This follows from the fact that for every vh ∈ Vh, we obtain

∥(I + τAh,1)
−1(I − τAh,1)vh∥2H

= ∥(I + τAh,1)
−1vh∥2H − 2τ

(
(I + τAh,1)

−1vh, Ah,1(I + τAh,1)
−1vh

)
H
+ ∥τ(I + τAh,1)

−1Ah,1vh∥2H
≤ ∥(I + τAh,1)

−1vh∥2H + 2τ
(
(I + τAh,1)

−1vh, Ah,1(I + τAh,1)
−1vh

)
H
+ ∥τ(I + τAh,1)

−1Ah,1vh∥2H
= ∥(I + τAh,1)

−1(I + τAh,1)vh∥2H = ∥vh∥2H ,

where we used Assumption 3.3 (d). Analogously, the same follows for (I − τAh,2)(I + τAh,2)
−1Ph.

Using the bound∥∥∥1
2
(I + τAh,1)

−1(I − τAh,1)(I − τAh,2)(I + τAh,2)
−1Ph +

1

2
I
∥∥∥
L(H)

≤ 1

2

∥∥(I + τAh,1)
−1(I − τAh,1)(I − τAh,2)(I + τAh,2)

−1Ph

∥∥
L(H)

+
1

2
≤ 1

in (4.1), it follows that the L(H)-norm of Sn
h,τ (I + τAh,2)

−1Ph is bounded by one. □

The following two lemmas show that the difference between the semigroup e−τAh generated by
the Ah and either (I + τAh,2)

−1(I + τAh,1)
−1 or Sh,τ lie in O(τ ζ) for all ζ ∈ [0, 1].

Lemma 4.3. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled. Then for all values ζ ∈ [0, 1], it follows
that ∥∥(I + τAh,2)

(
e−τAh − (I + τAh,2)

−1(I + τAh,1)
−1

)
PhA

−ζ
∥∥
L(H)

≤ Cτ ζ .

Proof. We prove this lemma using an interpolation result. For this, we begin to prove the bound
for ζ = 0, then ζ = 1 and provide the bound for all the in-between values using Lemma A.1. For
the case ζ = 0, we use (3.2) and Lemma 4.1 (ii) to find

∥B∥L(H) :=
∥∥(I + τAh,2)

(
e−τAh − (I + τAh,2)

−1(I + τAh,1)
−1

)
Ph

∥∥
L(H)

≤ ∥(I + τAh,2)e
−τAhPh∥L(H) + ∥(I + τAh,1)

−1Ph∥L(H)

≤ ∥e−τAhPh∥L(H) + ∥τAh,2A
−1
h Ahe

−τAhPh∥L(H) + 1
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≤ 2 + C∥Ah,2A
−1
h Ph∥L(H)∥τAhe

−τAhPh∥L(H) ≤ C.

This concludes the case for ζ = 0. Now we look at the case ζ = 1 and use the identity (I+τAh,1)
−1 =

I − τ(I + τAh,1)
−1Ah,1 as well as Lemma 4.1 (i), (3.3), and Lemma 4.1 (ii) to find that

∥BA−1∥L(H)

≤
∥∥((I + τAh,2)e

−τAh − (I + τAh,1)
−1

)
A−1

h Ph

∥∥
L(H)

∥AhPhA
−1∥L(H)

=
∥∥((I + τAh,2)e

−τAh − (I − τ(I + τAh,1)
−1Ah,1)

)
A−1

h Ph

∥∥
L(H)

∥AhPhA
−1∥L(H)

≤ C
(
∥A−1

h (e−τAh − I)Ph∥L(H) + τ∥Ah,2A
−1
h e−τAhPh∥L(H) + τ∥(I + τAh,1)

−1Ah,1A
−1
h Ph∥L(H)

)
≤ C

(
τ + τ∥Ah,2A

−1
h Ph∥L(H) + τ∥Ah,1A

−1
h Ph∥L(H)

)
≤ Cτ.

This concludes the case for ζ = 1. The result for ζ ∈ (0, 1) follows from Lemma A.1, which implies
that

∥∥BA−ζ
∥∥
L(H)

≤ Cτ ζ holds. This completes the proof. □

Lemma 4.4. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled. Further, let Sh,τ be given as in (3.8).
For all ζ ∈ [0, 1] and s ∈ R+, it follows that∥∥(I + τAh,2)

(
e−τAh − Sh,τ

)
e−sAhPhA

−ζ
∥∥
L(H)

≤ C
τ1+ζ

s
.

Proof. Again, we prove this lemma by using an interpolation result from Lemma A.1. Inserting the
definition of Sh,τ from (3.8) and the identity I = (I+τAh,1)

−1+τ(I+τAh,1)
−1Ah,1, we can rewrite

the left-hand side from the claimed result for ζ = 0 as

B := (I + τAh,2)(e
−τAh − Sh,τ )e

−sAhPh

=
(
((I + τAh,1)

−1 + τ(I + τAh,1)
−1Ah,1)(I + τAh,2)e

−τAh

− (I + τAh,1)
−1(I + τ2Ah,1Ah,2)

)
e−sAhPh

=
(
((I + τAh,1)

−1 + τ2(I + τAh,1)
−1Ah,1Ah,2)(e

−τAh − I)

+ τ(I + τAh,1)
−1Ahe

−τAh
)
A−1

h Ahe
−sAhPh.

For the case ζ = 0, we use (3.2), the fact that the operators (I + τAh,1)
−1Ph, e−τAhPh, and

τ(I+ τAh,1)
−1Ah,1Ph = I− (I+ τAh,1)

−1Ph are bounded operators, (3.3), Lemma 4.1 (ii), and find

∥B∥L(H) ≤
∥∥((I + τAh,1)

−1 + τ2(I + τAh,1)
−1Ah,1Ah,2

)
A−1

h (e−τAh − I)Ph

+ τ(I + τAh,1)
−1e−τAhPh

∥∥
L(H)

∥∥Ahe
−sAhPh

∥∥
L(H)

≤ C

s

(∥∥(I + τAh,1)
−1A−1

h (e−τAh − I)Ph

∥∥
L(H)

+
∥∥τ2(I + τAh,1)

−1Ah,1Ah,2A
−1
h (e−τAh − I)Ph

∥∥
L(H)

+
∥∥τ(I + τAh,1)

−1e−τAhPh

∥∥
L(H)

)
≤ C

s

(∥∥A−1
h (e−τAh − I)Ph

∥∥
L(H)

+ τ
∥∥τ(I + τAh,1)

−1Ah,1Ph

∥∥
L(H)

∥∥Ah,2A
−1
h Ph

∥∥
L(H)

∥∥(e−τAh − I)Ph

∥∥
L(H)

+ τ
)

≤ C
τ

s
.
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This concludes the first part of the proof for ζ = 0. For the second case ζ = 1, we use (3.2),
Lemma 4.1 (i), and obtain∥∥BA−1

∥∥
L(H)

≤
∥∥((I + τAh,1)

−1 + τ2(I + τAh,1)
−1Ah,1Ah,2

)
(e−τAh − I)A−2

h Ph

+ τ(I + τAh,1)
−1Ahe

−τAhA−2
h Ph

∥∥
L(H)

∥Ahe
−sAhPh∥L(H)∥AhPhA

−1∥L(H)

≤ C

s

(∥∥(I + τAh,1)
−1(e−τAh + τAhe

−τAh − I)A−2
h Ph

∥∥
L(H)

+ τ2
∥∥(I + τAh,1)

−1Ah,1Ah,2A
−2
h (e−τAh − I)Ph

∥∥
L(H)

)
≤ C

s

(∥∥(I + τAh,1)
−1(e−τAh + τAhe

−τAh − I)A−2
h Ph

∥∥
L(H)

+ τ∥τ(I + τAh,1)
−1Ah,1Ph∥L(H)∥Ah,2A

−1
h Ph∥L(H)

∥∥A−1
h (e−τAh − I)Ph

∥∥
L(H)

)
≤ C

s
τ2,

where we use the facts that∥∥(e−τAh + τAhe
−τAh − I)A−2

h Ph

∥∥
L(H)

=
∥∥∥∫ τ

0

rA2
he

−rAh drA−2
h Ph

∥∥∥
L(H)

≤ Cτ2

and τ(I + τAh,1)
−1Ah,1Ph = I − (I + τAh,1)

−1Ph is a bounded operator, Lemma 4.1 (ii), and (3.3)
in the last step. Now we have proved the claimed bound for both ζ = 0 and ζ = 1. The last step is
to deduce the result for ζ ∈ (0, 1). We can apply Lemma A.1 and obtain∥∥BA−ζ

∥∥
L(H)

≤ C
(τ2
s

)ζ(τ
s

)1−ζ

= C
τ1+ζ

s
,

which proves the claim of the lemma. □

The previous lemmas can now be combined to a bound quantify the difference between the exact
flow given through the semigroup e−tnA and its approximation Sn−1

h,τ (I + τAh,2)
−1(I + τAh,1)

−1Ph.
We will state two different versions of this bound. These differ between a minimal set of assumptions
in Lemma 4.5 and additional assumptions on the setting in Lemma 4.5 that provide the same final
error as in [28, Theorem 10.34] for our scheme.

Lemma 4.5. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled. Further, let Sh,τ be given as in (3.8).
For every n ∈ {1, . . . , N} and θ, ζ ∈ [0, 1], it follows that∥∥(e−tnA − Sn−1

h,τ (I + τAh,2)
−1(I + τAh,1)

−1Ph

)
A−θ

∥∥
L(H)

≤ C
(
(1 + ln(n))τθ + t−ζ(1−θ)

n h2θ+2ζ(1−θ)
)
.

Proof. We begin to split the term that we want to bound into two parts∥∥(e−tnA − Sn−1
h,τ (I + τAh,2)

−1(I + τAh,1)
−1Ph

)
A−θ

∥∥
L(H)

≤
∥∥(e−tnA − e−tnAhPh

)
A−θ

∥∥
L(H)

+
∥∥(e−tnAh − Sn−1

h,τ (I + τAh,2)
−1(I + τAh,1)

−1
)
PhA

−θ
∥∥
L(H)

=: Γ1 + Γ2.

In the following, we abbreviate B = e−tnA − e−tnAhPh. Then using that the semigroups e−tnA and
e−tnAh are bounded operators as well as Lemmas C.2 and C.3, it follows that

(4.2) ∥B∥L(H) ≤ C, ∥B∥L(H) ≤ C
h2

tn
and ∥BA−1∥L(H) ≤ Ch2.
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Furthermore, we have

(4.3) ∥B∥L(H) = ∥B∥ζL(H)∥B∥
1−ζ
L(H) ≤

(
C
h2

t

)ζ

C1−ζ = C
h2ζ

tζ
.

For all given θ ∈ [0, 1], the value ζ(1− θ) also lies in [0, 1] for every choice of ζ ∈ [0, 1]. Hence, after
applying Lemma A.1 and inserting the third bound of (4.2) and (4.3), it follows that

Γ1 = ∥BA−θ∥L(H) ≤ C∥BA−1∥θL(H)∥B∥
1−θ
L(H) ≤

(
Ch2

)θ(
C
h2ζ

tζn

)1−θ

= Ct−ζ(1−θ)
n h2θ+2ζ(1−θ).

It remains to bound Γ2. We decompose Γ2 using a telescopic sum structure where we can bound
the single summands with Lemmas 4.2, 4.4, 4.3 and then obtain

Γ2 =
∥∥(e−tnAh − Sn−1

h,τ (I + τAh,2)
−1(I + τAh,1)

−1
)
PhA

−θ
∥∥
L(H)

≤
n−1∑
k=1

∥∥(Sn−k−1
h,τ (I + τAh,2)

−1(I + τAh,2)(e
−τAh − Sh,τ )e

−tkAh
)
PhA

−θ
∥∥
L(H)

+
∥∥Sn−1

h,τ (I + τAh,2)
−1(I + τAh,2)

(
e−τAh − (I + τAh,2)

−1(I + τAh,1)
−1

)
PhA

−θ
∥∥
L(H)

≤
n−1∑
k=1

∥∥((I + τAh,2)(e
−τAh − Sh,τ )e

−tkAh
)
PhA

−θ
∥∥
L(H)

+
∥∥(I + τAh,2)

(
e−τAh − (I + τAh,2)

−1(I + τAh,1)
−1

)
PhA

−θ
∥∥
L(H)

≤ Cτθ
(
1 +

n−1∑
k=1

τ

tk

)
≤ C(1 + ln(n))τθ.

Here we used Lemma A.2 in the last step. This concludes the proof. □

Lemma 4.6. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled, additionally let A1 and A2 be self-adjoint
and commute. Further, let Sh,τ be given as in (3.8). For every n ∈ {1, . . . , N} and θ, ζ ∈ [0, 1], it
follows that ∥∥(e−tnA − Sn−1

h,τ (I + τAh,2)
−1(I + τAh,1)

−1Ph

)
A−θ

∥∥
L(H)

≤ Ct−ζ(1−θ)
n

(
(1 + ln(n))θτθ+ζ(1−θ) + h2θ+2ζ(1−θ)

)
.

Proof. In the following, we use the same abbreviation as in the proof of Lemma 4.5. Analogously,

we can bound the first error term and find that Γ1 ≤ Ct
−ζ(1−θ)
n h2θ+2ζ(1−θ). The difference to the

proof of the previous lemma is how we handle Γ2. In the following, we abbreviate B̃ = e−tnAhPh −
Sn−1
h,τ (I + τAh,2)

−1(I + τAh,1)
−1Ph. Then using that the semigroup e−tnAh is a bounded operator

as well as Lemmas 4.2, D.1 and the estimate of Γ2 in the proof of Lemma 4.5 for θ = 1, it follows
that

(4.4) ∥B̃∥L(H) ≤ C, ∥B̃∥L(H) ≤ C
τ

tn
and ∥B̃A−1∥L(H) ≤ Cτ(1 + ln(n)).

Additionally, we can combine the first two bounds from (4.4) and find for all ζ ∈ [0, 1]

(4.5) ∥B̃∥L(H) = ∥B̃∥ζL(H)∥B̃∥
1−ζ
L(H) ≤

(
C

τ

tn

)ζ

C1−ζ = C
τ ζ

tζn
.

An analogous argument combining (4.4) and (4.5) with the help of Lemma A.1 as for Γ1 in the proof
of Lemma 4.6 shows that

Γ2 = ∥B̃A−θ∥L(H) ≤
(
Cτ(1 + ln(n))

)θ(
C
τ ζ

tζn

)1−θ

= C(1 + ln(n))θt−ζ(1−θ)
n τθ+ζ(1−θ).



14 MONIKA EISENMANN, ESKIL HANSEN, AND MARVIN JANS

□

4.2. Convergence results. With the auxiliary results from the previous subsection in mind, we
can now begin to bound the error of the numerical method (3.7). We begin by considering the
difference between the exact solution in integral form (2.5) at a grid point tn and the numerical
approximation (3.7). To analyze the error in the following subsection, we split the difference into
three parts, as in [28, Theorem 10.34] for the semi-implicit Euler method,

X(tn)−Xn
h,τ

=
(
e−tnA − Sn−1

h,τ (I + τAh,2)
−1(I + τAh,1)

−1Ph

)
X0

+

n−1∑
k=0

[ ∫ tk+1

tk

e−(tn−s)Af(s,X(s)) ds− τSn−k−1
h,τ (I + τAh,2)

−1(I + τAh,1)
−1fh(tk, X

k
h,τ )

]
+

n−1∑
k=0

∫ tk+1

tk

[
e−(tn−s)AB(s,X(s))− Sn−k−1

h,τ (I + τAh,2)
−1(I + τAh,1)

−1Bh(tk, X
k
h,τ )

]
dW (s)

= ΓX0
+ Γf + ΓB .

We will now consider these three terms in more detail in the following lemmas. The error ΓX0
can

be estimated as follows.

Lemma 4.7. Let Assumptions 2.1, 2.2, 3.1, and 3.3 be fulfilled. For every n ∈ {1, . . . , N} and
ζ ∈ [0, 1], it follows that

∥ΓX0
∥Lp(Ω;H) ≤ C

(
(1 + ln(n))τθX0 + t

−ζ(1−θX0
)

n h2θX0
+2ζ(1−θX0

)
)
.

Proof. This follows directly from Lemma 4.5 and Assumption 2.2. □

In the next step, we consider the error Γf that arises from the drift term.

Lemma 4.8. Let Assumptions 2.1–2.3, 2.5, 3.1, and 3.3 be fulfilled for θf ∈ [0, θX0
) ∩ [0, 1

2 ). For
every n ∈ {1, . . . , N}, it follows that

∥Γf∥Lp(Ω;H) ≤ C
(
τmin(θX0

, 12 ) + (1 + ln(n))τmin(θf ,1) + h2θf+1
)
+ Cτ

n−1∑
k=0

∥X(tk)−Xk
h,τ∥Lp(Ω;H).

Proof. To bound the error term Γf , we decompose it into four separate terms

Γf =

n−1∑
k=0

∫ tk+1

tk

(
e−(tn−s)A − e−(tn−tk)A

)
f(s,X(s)) ds

+

n−1∑
k=0

e−(tn−tk)A

∫ tk+1

tk

(
f(s,X(s))− f(tk, X(tk))

)
ds

+ τ

n−1∑
k=0

(
e−(tn−tk)A − Sn−k−1

h,τ (I + τAh,2)
−1(I + τAh,1)

−1Ph

)
f(tk, X(tk))

+ τ

n−1∑
k=0

Sn−k−1
h,τ (I + τAh,2)

−1(I + τAh,1)
−1

(
Phf(tk, X(tk))− fh(tk, X

k
h,τ )

)
:= Γf,1 + Γf,2 + Γf,3 + Γf,4.
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For Γf,1, we apply the semigroup bounds (2.1), (2.2), use Assumption 2.3 (a) and (2.7) with ζ = 0
from Theorem 2.6 to find

∥Γf,1∥Lp(Ω;H) ≤
n−1∑
k=0

∥∥∥∫ tk+1

tk

Ae−(tn−s)AA−1
(
I − e−(s−tk)A

)
f(s,X(s)) ds

∥∥∥
Lp(Ω;H)

≤ Cτ sup
s∈[tn−1,tn]

∥f(s,X(s))∥Lp(Ω;H) + C

n−2∑
k=0

∫ tk+1

tk

|s− tk|
|tn − s|

∥f(s,X(s))∥Lp(Ω;H) ds

≤ Cτ
(
1 + sup

s∈[0,tf ]

∥X(s)∥Lp(Ω;H)

)
+ C

n−2∑
k=0

∫ tk+1

tk

τ

|tn − s|
(
1 + ∥X(s)∥Lp(Ω;H)

)
ds

≤ C(1 + ln(n))τ
(
1 + sup

s∈[0,tf ]

∥X(s)∥Lp(Ω;H)

)
≤ C(1 + ln(n))τ.

The second term Γf,2 can be bound by applying the semigroup e−(tn−tk)A is a bound operator,
Assumption 2.3 (b) and (2.8) from Theorem 2.6

∥Γf,2∥Lp(Ω;H) ≤
n−1∑
k=0

∥∥∥e−(tn−tk)A

∫ tk+1

tk

(
f(s,X(s))− f(tk, X(tk))

)
ds

∥∥∥
Lp(Ω;H)

≤
n−1∑
k=0

∫ tk+1

tk

∥f(s,X(s))− f(tk, X(tk))∥Lp(Ω;H) ds

≤ C

n−1∑
k=0

∫ tk+1

tk

|s− tk|min(θX0
, 12 )

(
1 +

∥X(s)−X(tk)∥Lp(Ω;H)

|s− tk|min(θX0
, 12 )

)
ds

≤ Cτmin(θX0
, 12 )

(
1 + sup

s,t∈[0,tf ],s ̸=t

∥X(s)−X(t)∥Lp(Ω;H)

|s− t|min(θX0
, 12 )

)
≤ Cτmin(θX0

, 12 ).

Next we apply Lemma 4.5 with ζ ∈ [0, 1] such that ζ(1 − θf ) = 1
2 in combination with Assump-

tion 2.3 (a) and Lemma A.2, which then leads to

∥Γf,3∥Lp(Ω;H) ≤ τ

n−1∑
k=0

∥∥(e−(tn−tk)A − Sn−k−1
h,τ (I + τAh,2)

−1(I + τAh,1)
−1Ph

)
f(tk, X(tk))

∥∥
Lp(Ω;H)

≤ Cτ

n−1∑
k=0

(
τθf (1 + ln(n− k)) +

h2θf+1

(tn − tk)
1
2

)∥∥Aθf f(tk, X(tk))
∥∥
Lp(Ω;H)

≤ C
(
(1 + ln(n))τθf + h2θf+1

)(
1 + sup

s∈[0,tf ]

∥AθfX(s)∥Lp(Ω;H)

)
≤ C

(
(1 + ln(n))τθf + h2θf+1

)
,

where we used (2.7) and θf ≤ θX0 in the last step. The last error term Γf,4 can be bounded with
Lemma 4.2, the facts that ∥(I + τAh,1)

−1Ph∥L(H) ≤ 1 and Phf(tk, X(tk)) = fh(tk, X(tk)) together
with Lemma 3.5 (i). Then, it follows that

∥Γf,4∥Lp(Ω;H) ≤ τ

n−1∑
k=0

∥∥Sn−k−1
h,τ (I + τAh,2)

−1(I + τAh,1)
−1

(
Phf(tk, X(tk))− fh(tk, X

k
h,τ )

)∥∥
Lp(Ω;H)

≤ Cτ

n−1∑
k=0

∥fh(tk, X(tk))− fh(tk, X
k
h,τ )∥Lp(Ω;H) ≤ Cτ

n−1∑
k=0

∥X(tk)−Xk
h,τ∥Lp(Ω;H).
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Combining the bounds for Γf,1, Γf,2, Γf,3, and Γf,4, we obtain the claimed result. □

For the error part ΓB arising from the stochastic perturbation, we bound the square of the
Lp(Ω;H)-norm for notational convenience.

Lemma 4.9. Let Assumptions 2.1–2.5, 3.1, 3.3, and 3.4 be fulfilled for θX0
∈ [θB , θB + 1

2 ). For
every n ∈ {1, . . . , N}, it follows that

∥ΓB∥2Lp(Ω;H) ≤ C(1 + ln(n))2
(
τmin(2θX0

,2θB ,1) + h2(2min(θB ,θU )+1)
)
+ Cτ

n−1∑
k=0

∥X(tk)−Xk
h,τ∥2Lp(Ω;H).

Proof. To estimate the ΓB-error, we begin to apply Burkholder–Davis–Grundy inequality (2.6) and
decompose the error into four parts as follows

∥ΓB∥2Lp(Ω;H)

≤ C

n−1∑
k=0

∫ tk+1

tk

∥∥e−(tn−s)AB(s,X(s))− Sn−k−1
h,τ (I + τAh,2)

−1(I + τAh,1)
−1Bh(tk, X

k
h,τ )

∥∥2
Lp(Ω;L0

2)
ds

≤ C
( n−1∑

k=0

∫ tk+1

tk

∥∥(e−(tn−s)A − e−(tn−tk)A
)
B(s,X(s))

∥∥2
Lp(Ω;L0

2)
ds

+

n−1∑
k=0

∫ tk+1

tk

∥∥e−(tn−tk)A
(
B(s,X(s))−B(tk, X(tk))

)∥∥2
Lp(Ω;L0

2)
ds

+

n−1∑
k=0

∫ tk+1

tk

∥∥(e−(tn−tk)A − Sn−k−1
h,τ (I + τAh,2)

−1(I + τAh,1)
−1Ph

)
B(tk, X(tk))

∥∥2
Lp(Ω;L0

2)
ds

+

n−1∑
k=0

∫ tk+1

tk

∥∥Sn−k−1
h,τ (I + τAh,2)

−1(I + τAh,1)
−1

(
PhB(tk, X(tk))−Bh(tk, X

k
h,τ )

)∥∥2
Lp(Ω;L0

2)
ds

)
:= C

(
ΓB,1 + ΓB,2 + ΓB,3 + ΓB,4

)
.

We begin with ΓB,1. This can be bound by applying the semigroup bounds (2.1), (2.2), Assump-
tion 2.5 (a), and (2.7) with ζ = 0 from Theorem 2.6. More precisely, we obtain

ΓB,1 =

n−1∑
k=0

∫ tk+1

tk

∥∥A 1
2 e−(tn−s)AA− 1

2 (I − e−(s−tk)A)B(s,X(s))
∥∥2
Lp(Ω;L0

2)
ds

≤ τ sup
s∈[tn−1,tn]

∥∥B(s,X(s))
∥∥2
Lp(Ω;L0

2)
+ C

n−2∑
k=0

∫ tk+1

tk

|s− tk|
|tn − s|

(
1 + ∥X(s)∥2Lp(Ω;H)

)
ds

≤
(
1 + Cτ

n−2∑
k=0

∫ tk+1

tk

|tn − s|−1 ds
)(

1 + sup
s∈[0,tf ]

∥X(s)∥2Lp(Ω;H)

)
≤ C(1 + ln(n))τ.

To bound the second term ΓB,2, we use Assumption 2.5 (b) and (2.8) from Theorem 2.6, to find

ΓB,2 =

n−1∑
k=0

∫ tk+1

tk

∥∥e−(tn−tk)A
(
B(s,X(s))−B(tk, X(tk))

)∥∥2
Lp(Ω;L0

2)
ds

≤ C

n−1∑
k=0

∫ tk+1

tk

∥∥B(s,X(s))−B(tk, X(tk))
∥∥2
Lp(Ω;L0

2)
ds
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≤ C

n−1∑
k=0

∫ tk+1

tk

|s− tk|min(2θX0
,1)
∥∥∥1 + ∥X(s)−X(tk)∥H

|s− tk|min(θX0
, 12 )

∥∥∥2
Lp(Ω;R)

ds ≤ Cτmin(2θX0
,1).

When bounding the third term ΓB,3, we can use Lemma 4.5 with ζ ∈ [0, 1] such that ζ(1− θB) =
1
2 ,

combine this with Assumption 2.5 (a) and apply (2.7) from Theorem 2.6 and Lemma A.2. This then
leads to

ΓB,3 = τ

n−1∑
k=0

∥∥(e−(tn−tk)A − Sn−k−1
h,τ (I + τAh,2)

−1(I + τAh,1)
−1Ph

)
B(tk, X(tk))

∥∥2
Lp(Ω;L0

2)

≤ Cτ

n−1∑
k=0

(
τθB (1 + ln(n− k)) +

h2θB+1

(tn − tk)
1
2

)2∥∥AθBB(tk, X(tk))
∥∥2
Lp(Ω;L0

2)

≤ Cτ

n−1∑
k=0

(
τ2θB (1 + ln(n− k))2 +

h2(2θB+1)

tn − tk

)(
1 + ∥AθBX(tk)∥Lp(Ω;H)

)2
≤ C(1 + ln(n))2

(
τ2θB + h2(2θB+1)

)
.

The remaining term ΓB,4, can be bound by an application of Lemma 4.2 and the fact that the term
∥(I + τAh,1)

−1Ph∥L(H) is bounded. Using Lemmas 3.5 (ii), (iii), and (2.7) from Theorem 2.6, we
then obtain

ΓB,4 = τ

n−1∑
k=0

∥∥Sn−k−1
h,τ (I + τAh,2)

−1(I + τAh,1)
−1

(
PhB(tk, X(tk))−Bh(tk, X

k
h,τ )

)∥∥2
Lp(Ω;L0

2)

≤ Cτ

n−1∑
k=0

(
∥PhB(tk, X(tk))−Bh(tk, X(tk))∥2Lp(Ω;L0

2)

+ ∥Bh(tk, X(tk))−Bh(tk, X
k
h,τ )∥2Lp(Ω;L0

2)

)
≤ Cτh2(2θU+1)

n−1∑
k=1

(
1 + ∥AθX0X(tk)∥2Lp(Ω;H)

)
+ Cτ

n−1∑
k=0

∥X(tk)−Xk
h,τ∥2Lp(Ω;H)

≤ Ch2(2θU+1) + Cτ

n−1∑
k=0

∥X(tk)−Xk
h,τ∥2Lp(Ω;H).

Combining the bounds for ΓB,1, ΓB,2, ΓB,3, and ΓB,4, we obtain the claimed result. □

Theorem 4.10. Let Assumptions 2.1–2.5, 3.1, 3.3, and 3.4 be fulfilled for θX0
∈ [θB , θB + 1

2 ) and

θf ∈ [0,min(θX0 ,
1
2 )). For every n ∈ {1, . . . , N}, it follows that

∥X(tn)−Xn
h,τ∥Lp(Ω;H) ≤ C(1 + ln(n))

(
τmin(θX0

,θf ,θB , 12 ) + h2min(θB ,θU )+1
)

+ C
(
t
−ζ(1−θX0

)
n h2θX0

+2ζ(1−θX0
)
)
+ h2θf+1.

Remark 4.11. For the final time tN = tf , i.e. n = N , we can choose ζ ∈ [0, 1] such that ζ(1−θX0
) = 1

2
and obtain the error bound

∥X(tN )−XN
h,τ∥Lp(Ω;H) ≤ C(1 + ln(N))

(
τmin(θX0

,θf ,θB , 12 ) + h2min(θB ,θU )+1
)
+ Ch2min(θX0

,θf )+1.

We additionally included Ct
−ζ(1−θ)
n h2θ+2ζ(1−θ) in the error bound to include the case of early time

steps where t
−ζ(1−θ)
n cannot be bounded independently of τ . In this case, the parabolic smoothing
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has not decreased the error coming from the initial value. To avoid the pole containing tn, we can
choose ζ = 0 and find

∥X(tn)−Xn
h,τ∥Lp(Ω;H) ≤ C(1 + ln(n))

(
τmin(θX0

,θf ,θB , 12 ) + h2min(θB ,θU )+1
)
+ Chmin(2θX0

,2θf+1)

or we keep the pole in the form of

∥X(tn)−Xn
h,τ∥Lp(Ω;H) ≤ C(1+ ln(n))

(
τmin(θX0

,θf ,θB , 12 )+h2min(θB ,θU )+1
)
+Ct

− 1
2

n h2θX0
+1+Ch2θf+1

to keep the optimal spatial convergence rate.

Proof of Theorem 4.10. For ζ ∈ [0, 1], we combine Lemmas 4.7, 4.8, and 4.9. This then leads to

∥X(tn)−Xn
h,τ∥2Lp(Ω;H)

≤ C∥ΓX0
∥2Lp(Ω;H) + C∥Γf∥2Lp(Ω;H) + C∥ΓB∥2Lp(Ω;H)

≤ C(1 + ln(n))2
(
τmin(2θX0

,2θf ,2θB ,1) + h2(2min(θB ,θU )+1)
)
+ Ct

−2ζ(1−θX0
)

n h2(2θX0
+2ζ(1−θX0

))

+ h2(2θf+1) + Cτ

n−1∑
k=0

∥X(tk)−Xk
h,τ∥2Lp(Ω;H).

Using the discrete Grönwall’s inequality (Lemma A.3) and taking the square root, we obtain the
claimed result

∥X(tn)−Xn
h,τ∥Lp(Ω;H) ≤ C(1 + ln(n))

(
τmin(θX0

,θf ,θB , 12 ) + h2min(θB ,θU )+1
)

+ C
(
t
−ζ(1−θX0

)
n h2θX0

+2ζ(1−θX0
)
)
+ h2θf+1.

□

Theorem 4.12. Let Assumptions 2.1–2.5, 3.1, 3.3, and 3.4 be fulfilled and let A1 and A2 addition-
ally be self-adjoint. For every n ∈ {1, . . . , N}, it follows that

∥X(tn)−Xn
h,τ∥Lp(Ω;H) ≤ Ct

−ζ(1−θX0
)

n

(
(1 + ln(n))θX0 τθX0

+ζ(1−θX0
) + h2θX0

+2ζ(1−θX0
)
)

+ C(1 + ln(n))
1
2

(
τmin(θX0

, 12 ) + hmin(2θU+1,2)
)
,

where ζ ∈ [0, 1].

Proof. The proof follows analogously to the proof of Theorem 4.10. The difference is that we
exchange Lemma 4.5 by Lemma 4.6 in Lemmas 4.7–4.9. More precisely, in Lemma 4.8, we apply
Lemma 4.6 with θ = 0 and ζ = 1 instead of Lemma 4.5 for Γf,3. Additionally, we bound ΓB,3 in
Lemma 4.9 using Lemma 4.6 with θ = 0, ζ = 1

2 instead of Lemma 4.5. □

5. Example: A fully discretized domain decomposition scheme

In this section, we exemplify the theoretical results. For the abstract Equation (1.1), we state a
more concrete SPDE in Section 5.1 and verify that the equation fits in the framework from Section 2.
Following the problem description, we state the space discretization in Section 5.2 followed by the full
discretization in Section 5.3. In both sections, we verify that the assumptions stated in Sections 3.1
and 3.2 are fulfilled.
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5.1. Continuous problem. We consider the semi-linear stochastic diffusion equation
(5.1)

dX(t,x) =
[
∇ · (K(x)∇X(t,x)) + f(t,X(t,x))

]
dt+B(t,X(t,x)) dW (t,x), (t,x) ∈ (0, tf ]×D;

X(t,x) = 0, (t,x) ∈ [0, tf ]× ∂D;

X(0,x) = X0(x), x ∈ D,

where D ⊂ Rd, d ∈ N, is an open, convex polygon, and tf ∈ R+. The linear operator A is given
through

(5.2) Av(x) = −∇ · (K(x)∇v(x)) , x ∈ D,

where the matrix-valued function K is Lipschitz continuous w.r.t. x, fulfills

(5.3) K ∈ Rd,d is symmetric

and the eigenvalues of K(x) lie in the interval

(5.4) [K0,K1] for K0,K1 ∈ R+ for almost every x ∈ D.

We interpret A as an unbounded operator in L2(D), i.e. A : dom(A) ⊂ L2(D) → L2(D), where
the domain of A is given by dom(A) = {v ∈ H1

0 (D) : Av ∈ L2(D)} = H2(D) ∩ H1
0 (D). Note

that dom(A) is a dense subset of L2(D) and that ∥v∥H2(D) ≤ C∥Av∥L2(D) for all v ∈ dom(A),
compare [17, Theorem 9.24] in combination with [16, Theorem 1.4.3.]. For more details on Sobolev
spaces and their norms, we refer the reader to [17, Chapter 6.2].

For our method, we want to split A into two parts A1 and A2. As a decomposition of the operator
A, we choose a domain decomposition. To specify this, we choose two overlapping subdomains
{Dℓ}2ℓ=1 of D with a Lipschitz boundary. The union of the two subdomains is D again. On these
subdomains, we define the non-negative weight functions {χℓ}2ℓ=1 ⊂ W 1,∞(D). The support of χℓ

is Dℓ and the two weight functions form a partition of unity on D and fulfill ∥χℓ∥L∞(D) ≤ 1 for
ℓ ∈ {1, 2}. Furthermore, we assume that the weight functions are piecewise linear. We define

(5.5) Aℓv(x) = −∇ · (χℓ(x)K(x)∇v(x)) , ℓ ∈ {1, 2}, x ∈ D,

for v ∈ dom(Aℓ) = {u ∈ H1
0 (D) : Aℓu ∈ L2(D)}. Note that dom(A) ⊆ dom(Aℓ) is fulfilled. As this

set does not appear in the analysis of the fully discretized method, we do not introduce this in much
detail here but refer the reader to [19, Equation (2.8) and Lemma 2.4] for more details.

The operators A, A1, and A2 fit into the setting of Assumption 2.1, where H = L2(D). First,
we note that since χ1 + χ2 = 1 on D, it follows that A1 + A2 = A. Moreover, we can show that
Assumption 2.1 (a) is fulfilled. Since K is positive definite, the operator A is positive, and −A gen-
erates an analytical contraction semigroup, compare [34, Section 3.3]. Furthermore, in our example,
the operator A is additionally self-adjoint. Note that only the constant of Assumption 2.1 (a) is
dependent on ∥∇χℓ∥L∞(D)d , which can be linked to the overlap size of the domain decomposition.

Lemma 5.1. Let A and Aℓ, ℓ ∈ {1, 2}, be given as in (5.2) and (5.5), respectively. Then it follows
that

∥AℓA
−1∥L(L2(D)) ≤ 1 + C∥∇χℓ∥L∞(D)d ,

where C does not depend on χℓ. This verifies that Assumption 2.1 (b) is fulfilled.

Proof. For the proof, we look at the operator norm of Aℓ and A−1 separately. More precisely, we
can bound the operator norm of the product by

∥AℓA
−1∥L(L2(D)) ≤ ∥Aℓ∥L(dom(A);L2(D))∥A−1∥L(L2(D);dom(A)),
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where we equip dom(A) with the graph norm ∥·∥L2(D)+∥A ·∥L2(D). First, we note that the operator

A−1 : L2(D) → dom(A) is bounded. It remains to show that Aℓ : dom(A) → L2(D) is bounded. For
all v ∈ dom(A), it follows that

∥Aℓv∥L2(D)

∥v∥L2(D) + ∥Av∥L2(D)
≤

∥∇ · (χℓK∇v)∥L2(D)

∥Av∥L2(D)
≤

∥χℓAv∥L2(D) + ∥∇χℓ ·K∇v∥L2(D)

∥Av∥L2(D)

≤
∥Av∥L2(D) + ∥∇χℓ∥L∞(D)d∥K∇v∥L2(D)d

∥Av∥L2(D)

≤ 1 +
K1∥∇χℓ∥L∞(D)d∥∇v∥L2(D)d

∥Av∥L2(D)
≤ 1 + C∥∇χℓ∥L∞(D)d ,

where we used in the last step that dom(A) is continuously embedded in H1
0 (D) and ∥∇ · ∥L2(D)d is

an equivalent norm in H1
0 (D). □

Moreover, for θf , θB ∈ [0, 1
2 ), θX0

∈ [max(θf , θB), θB + 1
2 ), and U = L2(D), let X0, f , W , and B

satisfy Assumptions 2.2–2.5.

5.2. Discontinuous Galerkin spatial discretization. When discretizing the SPDE (5.1) in
space, we choose the discontinuous Galerkin method. In the following, we give a short introduction
and explanation of the notation used. For further information, we refer the reader to [15,37].

We discretization the spatial domain D by the mesh Th which contains the elements T ∈ Th. The
elements T are affine mappings of a reference element T̂ , which is a convex polyhedron in Rd with
n0 faces. In the following, we denote the diameter of an element T by hT . The value h indicates the
maximum of the diameters hT of elements in the mesh Th. We assume that the mash sequence Th
fullfills the conditions of [35, Lemma 1.62], and there is a constant C ∈ R+, independent of h, such
that hT ≥ Ch for all T ∈ Th. Moreover, we assume that χℓ|T , ℓ ∈ {1, 2}, is linear on every T ∈ Th
for every h. The collection of the edges e of elements T in Th is denoted by Fh. As one edge can
belong to two elements of Th at the same time, those two corresponding elements are denoted by
T+
e and T−

e , where the choice of notation of the two elements is arbitrary but after that the choice
is consistent. If e ⊂ ∂D, there is only one element Te associated with this particular edge. In the
following, we denote he = min(hT+

e
, hT−

e
) if e does not lie on the boundary ∂D and he = hT for

e ⊂ ∂D. The discretization space is defined as

Vh = {vh ∈ L2(D) : vh|T ∈ P1(T ) for all T ∈ Th},

where P1(T ) denotes the polynomials of at most order 1 on the element T , and vh|T is the restriction
of vh to an element T . An example for a basis for the space Vh can be put together by defining
polynomial bases on each element T ∈ Th such that every function has its support only in one
element T . When considering two basis functions φi and φj of Vh, the inner product is (φi, φj)H
can only be nonzero if the functions’ support lies on the same element T . Thus, after choosing a
suitable order of the basis elements, the mass matrix (M)i,j = (φi, φj)H obtains a block structure.
The blocs represent the elements T ∈ Th.

Moreover, for ν ∈ {0, 1, 2}, we introduce the following broken space Hν(Th) on the partition Th,
compare with [37, Section 2.3],

Hν(Th) = {v ∈ L2(D) : v|T ∈ Hν(T ) for all T ∈ Th} with |||v|||Hν(Th)
=

( ∑
T∈Th

∥v|T ∥2Hν(T )

) 1
2

.

Note that H0(Th) is equal to the Lebesgue space L2(D) and that for v ∈ Hν(D), we find that
|||v|||Hν(Th)

= ∥v∥Hν(D). Additionally, for v ∈ dom(A) no jumps appear on the edges e ∈ Fh,
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compare [35, Lemma 4.3]. On an element T , we can then make the following statement for the
L2(D)-projection operator Ph that maps L2(D) on Vh.

Lemma 5.2. For all ν ∈ {0, 1, 2}, m ∈ {0, . . . , ν}, T ∈ Th, and v ∈ Hν(T ), it follows that

∥ (I − Ph) v∥Hm(T ) ≤ Chν−m
T ∥v∥Hν(T ),

where C is independent of h and T .

The proof of this lemma follows from [35, Lemma 1.58]. With the help of this lemma, the
projection error of Ph can be bounded as stated Assumption 3.1, i.e. we observe that

∥(I − Ph)v∥L2(D) =
( ∑

T∈Th

∥(I − Ph)v∥2L2(T )

) 1
2 ≤ C

( ∑
T∈Th

h4
T ∥v∥2H2(T )

) 1
2

≤ Ch2∥v∥H2(D) ≤ Ch2∥Av∥L2(D)

is fulfilled for every v ∈ H2(D) ∩H1
0 (D) = dom(A). To show that Vh fits into Assumption 3.3, we

first need to state some additional definitions. Functions from the discretization space Vh can have
jumps on the edges e ∈ Fh. Therefore, we define the jump function and average function on an
interior edge e as

(5.6) [v]|e = v|T+
e
− v|T−

e
and {v}|e =

1

2

(
vT+

e
+ vT−

e

)
,

where T+
e and T−

e are the two elements that share the edge e. On an edge on the boundary ∂D, the
functions are defined as

(5.7) {v}|e = v|Te
= [v]|e.

Furthermore, we also use the following semi-norm related to jumps on the faces. For v ∈ L2(D),
this norm is denoted by

|v|Jh
=

( ∑
e∈Fh

1

he
∥[v]∥2L2(e)

) 1
2

.

To show that Assumption 3.3 is fulfilled, we need to introduce a suitable norm as mentioned in (3.1).
We choose the norm that is induced by the inner product

(vh, wh)Vh
=

∑
T∈Th

(vh|T , wh|T )H1(T ) +
∑
e∈Fh

1

he
([vh], [wh])L2(e) for all vh, wh ∈ Vh

and then given by

(5.8) ∥·∥Vh
=

(
||| · |||2H1(Th)

+ | · |2Jh

) 1
2 .

For σ ∈ R+
0 and K as stated in (5.3)–(5.4), we can now define the discretized operator Ah : Vh → Vh

via its corresponding bilinear form ah through (Ahvh, wh) = ah(vh, wh) for all vh, wh ∈ Vh, where

ah(vh, wh) :=
∑
T∈Th

(K∇vh,∇wh)L2(T )d −
∑
e∈Fh

∫
e

{K∇vh · ne}[wh] dξ

−
∑
e∈Fh

∫
e

{K∇wh · ne}[vh] dξ +
∑
e∈Fh

∫
e

σ

h
[vh][wh] dξ

(5.9)

for all vh, wh ∈ Vh. Here, ne is the outer pointing normal derivative such that ne := nT+
e

= −nT−
e

for an inner edge e and ne := nTe for an edge e ⊂ ∂T . In (5.9), we see four relevant terms in the dG
formulation: the weak formulation of A, the consistency term, the symmetry term, and the penalty
term. For a detailed derivation, we refer the reader to [35, Chapter 4.2.1.1–4.2.1.3]. Note also that
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the discrete operator weakly enforces the Dirichlet boundary condition. The parameter σ is chosen
such that Ah is strongly positive.

Lemma 5.3. Let Ah : Vh → Vh be given as in (5.9). Further, let n0 be the maximal number of
vertices of an element T ∈ Th. For σ > Cχn0, where Cχ is from Lemma B.1, it follows that
Ah is strongly positive and bounded, where the norm ∥ · ∥Vh

is given in (5.8). This ensures that
Assumptions 3.3 (a)–(b) are fulfilled.

This statement follows from the lemmas from [35, Lemmas 4.12 and 4.16] which we combine
with [35, Equation (4.20) and Lemma 4.20]. The discretizations fh : [0, tf ] × L2(D) → Vh and
Bh : [0, tf ]× L2(D) → L0

2 of f and B are given as in (3.4) and (3.6), respectively.

5.3. Full discretization. The operator Ah stated in (5.9) is now split into two separate parts. As
a decomposition of the operator A, we choose a domain decomposition method. We then define
Ah,ℓ : Vh → Vh that fulfills (Ah,ℓvh, wh) = ah,ℓ(vh, wh) for all vh, wh ∈ Vh, where

ah,ℓ(vh, wh) :=
∑
T∈Th

(χℓK∇vh,∇wh)L2(T )d −
∑
e∈Fh

∫
e

{χℓK∇vh · ne}[wh] dξ

−
∑
e∈Fh

∫
e

{χℓK∇wh · ne}[vh] dξ +
∑
e∈Fh

∫
e

χℓ
σ

he
[vh][wh] dξ

(5.10)

for ℓ ∈ {1, 2}. In the following, we go through Assumption 3.3 (c)–(g) and prove that Ah, Ah,1,
and Ah,2 fit into the setting. The sum property Ah = Ah,1 + Ah,2 from Assumption 3.3 (c) is a
direct consequence form the sum property of χ1 and χ2. This can easily be observed after inserting
1 = χ1 + χ2 into (5.10). The next step is to prove the non-negativity of a split operator Ah,ℓ,
ℓ ∈ {1, 2}, i.e. Assumption 3.3 (d). Before we turn to the proof of this result, in the same fashion
as [37, Section 2.7.1] , we first provide an auxiliary result that is of use in the proof for non-negativity.
For this, we keep track of the constants because they give restrictions on the parameter σ.

Lemma 5.4. For every T ∈ Th, every e ∈ Fh such that e ⊂ ∂T , the outward pointing normal
derivative ne = n∂T |e and vh ∈ Vh, it follows that∥∥χ 1

2

ℓ ∇vh|T
∥∥2
L2(e)d

≤ Cχh
−1
T

∥∥χ 1
2

ℓ ∇vh
∥∥2
L2(T )d

,

where the constant Cχ is stated in Lemma B.1.

Proof. The main idea of this proof is to apply Lemma B.1. We cannot directly apply this lemma

though as a function χ
1
2

ℓ ∇vh|T is not necessarily a polynomial. Note though that in the L2(e)-norm,
a square appears which cancels out the square root. Thus, we rewrite the L2-norm as an L1-norm.
This then enables us to apply Lemma B.1 and we obtain∥∥χ 1

2

ℓ ∇vh|T
∥∥2
L2(e)d

= ∥χℓ∇vh|T : ∇vh|T ∥L1(e)d

≤ Cχh
−1
T ∥χℓ∇vh|T : ∇vh|T ∥L1(T )d = Cχh

−1
T

∥∥χ 1
2

ℓ ∇vh|T
∥∥2
L2(T )d

,

where : is the notation used for element-wise multiplication between two vectors. □

Lemma 5.5. Let Ah,ℓ : Vh → Vh be given as in (5.10). Further, let K be as stated in (5.3)–(5.4)

and n0 the maximal number of vertices of an element the elements T ∈ Th. For σ ≥ CχK
2
1K

−1
0 n0,

where Cχ is from Lemma B.1, and ℓ ∈ {1, 2}, it follows that Ah,ℓ is non-negative on Vh with respect
to the L2(D)-norm, i.e., for all vh ∈ Vh it holds that (Ah,ℓvh, vh)L2(D) ≥ 0. This ensures that

Assumption 3.3 (d) is fulfilled.
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Proof. For all vh ∈ Vh it follows that

(Ah,ℓvh, vh)L2(D)

=
∑
T∈Th

(
χ

1
2

ℓ K
1
2∇vh, χ

1
2

ℓ K
1
2∇vh

)
L2(T )d

− 2
∑
e∈Fh

∫
e

{χ
1
2

ℓ K∇vh · ne}[χ
1
2

ℓ vh] dξ

+
∑
e∈Fh

∫
e

σ

he
[χ

1
2

ℓ vh][χ
1
2

ℓ vh] dξ

≥ ∥χ
1
2

ℓ K
1
2∇vh∥2L2(D)d − 2

∑
e∈Fh

h
1
2
e

∥∥{χ 1
2

ℓ K∇vh · ne}
∥∥
L2(e)

h
− 1

2
e

∥∥[χ 1
2

ℓ vh]
∥∥
L2(e)

+ σ
∣∣χ 1

2

ℓ vh
∣∣2
Jh

=: Γ1 − Γ2 + Γ3.

In the remainder of the proof, we want to show that Γ1 − Γ2 +Γ3 ≥ 0. We begin to apply Cauchy–
Schwartz inequality for sums and obtain

Γ2 ≤ 2
( ∑

e∈Fh

he

∥∥{χ 1
2

ℓ K∇vh · ne}
∥∥2
L2(e)

) 1
2
( ∑

e∈Fh

h−1
e

∥∥[χ 1
2

ℓ vh]
∥∥2
L2(e)

) 1
2

≤ 2
( ∑

e∈Fh

he

∥∥{χ 1
2

ℓ K∇vh · ne}
∥∥2
L2(e)

) 1
2 |χ

1
2

ℓ vh|Jh
.

If e does not lie on ∂D, we insert the definition of the average from (5.6). For such an e we can
apply Lemma 5.4 and obtain

h
1
2
e

∥∥{χ 1
2

ℓ K∇vh · ne}
∥∥
L2(e)

=
h

1
2
e

2

∥∥(χ 1
2

ℓ K∇vh|T+
e
· ne + χ

1
2

ℓ K∇vh|T−
e
· ne

)∥∥
L2(e)

≤ h
1
2
e K1

2

∥∥χ 1
2

ℓ ∇vh|T+
e

∥∥
L2(e)d

+
h

1
2
e K1

2

∥∥χ 1
2

ℓ ∇vh|T−
e

∥∥
L2(e)d

≤ C
1
2
χK1

2

(( he

hT+
e

) 1
2 ∥∥χ 1

2

ℓ ∇vh
∥∥
L2(T+

e )d
+

( he

hT−
e

) 1
2 ∥∥χ 1

2

ℓ ∇vh
∥∥
L2(T−

e )d

)
≤ C

1
2
χK1

2

(∥∥χ 1
2

ℓ ∇vh
∥∥
L2(T+

e )d
+

∥∥χ 1
2

ℓ ∇vh
∥∥
L2(T−

e )d

)
,

where we use he = min(hT+
e
, hT−

e
) in the last step. In a similar way, for an edge e ⊂ ∂D, we apply

the definition of the average on the boundary (5.7) and Lemma 5.4 to find

h
1
2
e

∥∥{χ 1
2

ℓ K∇vh · ne}
∥∥
L2(e)

≤ C
1
2
χK1

∥∥χ 1
2

ℓ ∇vh
∥∥
L2(Te)d

.

When we reorder the sum, we apply the fact that every element T in Th is counted n0 times in total
after summing over T+

e and T−
e for all edges e ∈ Fh. We can therefore bound Γ2 by

Γ2 ≤ C
1
2
χK1

(( ∑
e∈Fh,e̸⊂∂D

∥∥χ 1
2

ℓ ∇vh
∥∥2
L2(T+

e )d

) 1
2

+
( ∑

e∈Fh,e̸⊂∂D

∥∥χ 1
2

ℓ ∇vh
∥∥2
L2(T−

e )d

) 1
2
)
|χ

1
2

ℓ vh|Jh

+ 2C
1
2
χK1

( ∑
e∈Fh,e⊂∂D

∥∥χ 1
2

ℓ ∇vh
∥∥2
L2(Te)d

) 1
2 |χ

1
2

ℓ vh|Jh

≤ 2C
1
2
χK1K

− 1
2

0 n
1
2
0

( ∑
T∈Th

∥∥χ 1
2

ℓ K
1
2∇vh

∥∥2
L2(T )d

) 1
2 |χ

1
2

ℓ vh|Jh

= 2C
1
2
χK1K

− 1
2

0 n
1
2
0 ∥χ

1
2

ℓ K
1
2∇vh∥L2(D)d |χ

1
2

ℓ vh|Jh
.
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Applying Young’s inequality for products, we obtain

Γ2 ≤ ∥χ
1
2

ℓ K
1
2∇vh∥2L2(D)d + CχK

2
1K

−1
0 n0|χ

1
2

ℓ vh|
2
Jh
.

Thus, for σ ≥ CχK
2
1K

−1
0 n0, we find

(Ah,ℓvh, vh)L2(D)

≥ ∥χ
1
2

ℓ K
1
2∇vh∥2L2(D)d − ∥χ

1
2

ℓ K
1
2∇vh∥2L2(D)d − CχK1K

− 1
2

0 n0|χ
1
2

ℓ vh|
2
Jh

+ σ
∣∣χ 1

2

ℓ vh
∣∣2
Jh

≥ 0,

which finishes the proof of the lemma. □

Remark 5.6. To our knowledge, no sharp bounds for Cχ are known. An exception is the case p = 2;
compare [40]. Therefore, we have no sharp bound for the restriction of σ which instead has to be
checked numerically.

Lemma 5.7. The operator Ah,ℓ defined in (5.10) fulfills that

∥Ah,ℓPh∥L(L2(D)) ≤ Ch−2.

Thus, Assumption 3.3 (e) is fulfilled.

Proof. Since Ah,ℓ is self-adjoint, we can express the operator norm by

∥Ah,ℓPh∥L(L2(D)) = sup
∥v∥L2(D)≤1

|(Ah,ℓPhv, v)L2(D)| = sup
vh∈Vh,∥vh∥L2(D)≤1

|(Ah,ℓvh, vh)L2(D)|,

compare [41, Satz V.5.7]. Inserting the definition from (5.10), we find

|(Ah,ℓvh, vh)L2(D)| ≤
∣∣∣ ∑
T∈Th

(
χℓK∇vh,∇vh

)
L2(T )d

∣∣∣+ 2
∣∣∣ ∑
e∈Fh

∫
e

{χℓK∇vh · ne}[vh] dξ
∣∣∣

+
∣∣∣ ∑
e∈Fh

∫
e

χℓ
σ

he
[vh][vh] dξ

∣∣∣
=: Γ1 + Γ2 + Γ3.

We begin to bound Γ1 using the Cauchy-Schwarz inequality, Lemma B.2 and maxT∈Th
h−1
T ≤ Ch−1

to obtain

Γ1 =
∣∣∣ ∑
T∈Th

(χℓK∇vh,∇vh)L2(T )

∣∣∣ ≤ ∑
T∈Th

∥χℓ∥L∞(T )∥K
1
2∇vh∥2L2(T )d ≤ Ch−2∥vh∥2L2(D).

We now turn our attention towards Γ2. From Cauchy-Schwartz inequality, as well as, Lemmas B.1
and B.2, it follows

Γ2 = 2
∣∣∣ ∑
e∈Fh

∫
e

{χℓK∇vh · ne}[vh] dξ
∣∣∣

≤ 2
( ∑

e∈Fh

∥{K∇vh · ne}∥2L2(e)

) 1
2
( ∑

e∈Fh

∥[vh]∥2L2(e)

) 1
2

≤ Ch−1
( ∑

T∈Th

∥∇vh∥2L2(T )d

) 1
2
( ∑

T∈Th

∥vh∥2L2(T )

) 1
2 ≤ Ch−2∥vh∥2L2(D).

For the last remaining summand Γ3, we apply Lemma B.1 and find

Γ3 =
∣∣∣ ∑
e∈Fh

∫
e

χℓ
σ

he
[vh]

2 dξ
∣∣∣ ≤ Ch−1

∑
e∈Fh

∥[vh]∥2L2(e) ≤ Ch−2
∑
T∈Th

∥vh∥2L2(T ) = Ch−2∥vh∥2L2(D).

Combining the bounds for Γ1, Γ2, and Γ3, we obtain the desired result. □
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The result of the following lemma is similar sort of the result for Friedrichs’ operators in [20,
Proposition 4.14].

Lemma 5.8. Let Aℓ and Ah,ℓ be defined as in (5.5) and (5.10), respectively. For ℓ ∈ {1, 2}, it
follows that ∥∥(Ah,ℓPh − PhAℓ

)
v
∥∥
L2(D)

≤ C∥Av∥L2(D) for all v ∈ dom(A).

This shows that Assumption 3.3 (f) is satisfied.

Proof. Since
(
Ah,ℓPh − PhAℓ

)
v ∈ Vh for v ∈ dom(A), we can write that∥∥(Ah,ℓPh − PhAℓ

)
v
∥∥
L2(D)

= sup
wh∈Vh,∥wh∥L2(D)=1

∣∣((Ah,ℓPh −Aℓ)v, wh

)
L2(D)

∣∣.
First, let us look at the non-discretized operator Aℓ a bit closer. Using integration by parts, we find

(Aℓv, wh)L2(D) =
∑
T∈Th

(χℓK∇v,∇wh)L2(T ) −
∑
e∈Fh

∫
e

(χℓK∇v · ne)[wh] dξ

=
∑
T∈Th

(χℓK∇v,∇wh)L2(T ) −
∑
e∈Fh

∫
e

{χℓK∇v · ne}[wh] dξ

−
∑
e∈Fh

∫
e

{χℓK∇wh · ne}[v] dξ +
∑
e∈Fh

∫
e

χℓ
σ

he
[v][wh] dξ,

where in the first step the boundary terms do not disappear because of the possible discontinuities
of wh. In the second step, we use the fact that χℓK∇v · ne = {χℓK∇v · ne} and ∥[v]∥L2(e) = 0 for

v ∈ dom(A), compare [35, Lemma 1.23]. With an application of Hölder’s inequality we then obtain
that ∣∣((Ah,ℓPh −Aℓ)v, wh

)
L2(D)

∣∣
=

∣∣∣ ∑
T∈Th

(χℓK∇(Ph − I)v,∇wh)L2(T ) −
∑
e∈Fh

∫
e

{χℓK∇(Ph − I)v · ne}[wh] dξ

−
∑
e∈Fh

∫
e

{χℓK∇wh · ne}[(Ph − I)v] dξ +
∑
e∈Fh

∫
e

χℓ
σ

he
[(Ph − I)v][wh] dξ

∣∣∣
≤ K1

∑
T∈Th

∥∇(Ph − I)v∥L2(T )d ∥∇wh∥L2(T )d

+
∑
e∈Fh

∥{K∇(Ph − I)v · ne}∥L2(e) ∥[wh]∥L2(e)

+
∑
e∈Fh

∥{K∇wh · ne}∥L2(e) ∥[(Ph − I)v]∥L2(e)

+ σ
∑
e∈Fh

1

he
∥[(Ph − I)v]∥L2(e) ∥[wh]∥L2(e) =: Γ1 + Γ2 + Γ3 + Γ4.

To prove the desired bound, we will consider Γ1,Γ2,Γ3, and Γ4, separately. First, for Γ1, we can use
Cauchy-Schwarz inequality for sums and then Lemmas 5.2 and B.2

Γ1 = K1

∑
T∈Th

∥∇(Ph − I)v∥L2(T )d ∥∇wh∥L2(T )d

≤ C
( ∑

T∈Th

h−2
T ∥(Ph − I)v∥2H1(T )

) 1
2
( ∑

T∈Th

h2
T ∥∇wh∥2L2(T )

) 1
2
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≤ C
( ∑

T∈Th

∥v∥2H2(T )

) 1
2
( ∑

T∈Th

∥wh∥2L2(T )

) 1
2

= C∥v∥H2(D) ∥wh∥L2(D) ,

where we used that ∥v∥H2(D) = |||v|||H2(Th)
for a function v ∈ H2(D). For the second term, Γ2, we

apply Lemma B.3 and Lemma B.1. Note that Lemma B.1 is formulated for scalar-valued functions
instead of a vector-valued function ∇(Ph − I)v. We can still apply the lemma for the components
of the vector-valued function. With Lemma 5.2 we can then bound the projection error and then
obtain in combination with the Cauchy–Schwarz inequality for sums

Γ2 =
∑
e∈Fh

∥{K∇(Ph − I)v · ne}∥L2(e) ∥[wh]∥L2(e)

≤ C
( ∑

e∈Fh

∥{K∇(Ph − I)v · ne}∥2L2(e)

) 1
2
( ∑

e∈Fh

∥[wh]∥2L2(e)

) 1
2

≤ C
( ∑

T∈Th

∥(Ph − I)v∥H1(T )

(
h−1
T ∥(Ph − I)v∥H1(T ) + ∥(Ph − I)v∥H2(T )

)) 1
2

×
( ∑

T∈Th

h−1
T ∥wh∥2L2(T )

) 1
2

≤ Ch
( ∑

T∈Th

hT ∥v∥2H2(T )

) 1
2
( ∑

T∈Th

∥wh∥2L2(T )

) 1
2 ≤ C∥v∥H2(D)∥wh∥L2(D).

Similarly, we bound Γ3 by applying Lemmas B.1 and B.2 for the first factor and Lemmas B.1 and
5.2 for the second. An additional application of Cauchy–Schwarz inequality for sums then shows
that

Γ3 =
∑
e∈Fh

∥{K∇wh · ne}∥L2(e) ∥[(Ph − I)v]∥L2(e)

≤ C
( ∑

e∈Fh

∥{K∇wh · ne}∥2L2(e)

) 1
2
( ∑

e∈Fh

∥[(Ph − I)v]∥2L2(e)

) 1
2

≤ C
( ∑

T∈Th

h−1
T ∥∇wh∥2L2(T )

) 1
2
( ∑

T∈Th

h−1
T ∥(Ph − I)v∥2L2(T )

) 1
2

≤ C
( ∑

T∈Th

h−3
T ∥wh∥2L2(T )

) 1
2
( ∑

T∈Th

h3
T ∥v∥2H2(T )

) 1
2 ≤ C∥wh∥L2(D)∥v∥H2(D).

For the last term Γ4, we apply Lemmas B.3, B.1 for the two obtained factors and the fact that
he = min(hT+

e
, hT−

e
) ≥ Ch for every edge e of an element T . Moreover, we use Lemma 5.2 to bound

the projection error and Cauchy–Schwarz inequality for sums. More precisely, we obtain

Γ4 = σ
∑
e∈Fh

h−1
e ∥[(Ph − I)v]∥L2(e) ∥[wh]∥L2(e)

≤ C
( ∑

e∈Fh

h−2
e ∥[(Ph − I)v]∥2L2(e)

) 1
2
( ∑

e∈Fh

∥[wh]∥2L2(e)

) 1
2

≤ C
( ∑

T∈Th

h−3 ∥(Ph − I)v∥2L2(T )

) 1
2
( ∑

T∈Th

h−1
T ∥wh∥2L2(T )

) 1
2
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≤ C
( ∑

T∈Th

h ∥v∥2H2(T )

) 1
2
( ∑

T∈Th

h−1
T ∥wh∥2L2(T )

) 1
2 ≤ C∥v∥H2(D) ∥wh∥L2(D) .

Combing the bound for Γ1 to Γ4, we can now prove the claimed result of the lemma∥∥(Ah,ℓPh − PhAℓ

)
v
∥∥
L2(D)

= sup
wh∈Vh,∥wh∥L2(D)=1

((
Ah,ℓPh −Aℓ

)
v, wh

)
L2(D)

≤ C∥v∥H2(D).

Since ∥v∥H2(D) ≤ C∥Av∥L2(D) for v ∈ dom(A), we have completed the proof of the required state-
ment. □

The last lemma of this section completes the verification of Assumption 3.3.

Lemma 5.9. Let A and Aℓ be defined as in (5.2) and (5.5), respectively. If σ > C
K2

1

K0
where C

depends on the mesh, it follows that

∥A−1 −A−1
h Ph∥L(L2(D)) ≤ Ch2,

i.e. Assumption 3.3 (g) is fulfilled.

A proof can be performed in a similar fashion as in [35, Corollary 4.26]. Additionally, we use the
fact that ∥A−1v∥H2(D) ≤ C∥v∥L2(D), compare [17, Theorem 9.24]) for our choice of K.

The lemmas of Section 5 show that the stochastic evolution equation from (5.1) fits into the
theoretical framework of Section 2 and that the dG framework fulfills the assumptions stated in
Section 3. We have therefore verified that our main theoretical convergence result from Theorem 4.10
is indeed applicable.

6. Numerical experiments

In the following section, we will validate our theoretical results through numerical tests. To
implement the dG spatial discretization scheme we used the software module DUNE-FEM [9]. For
the dG approximation, we choose polynomials of at most order one and the parameter σ = 3 in (5.9)
and (5.10). We choose σ in accordance to empirical findings. We looked at two examples to test
our method. First, we look at a semi-linear stochastic heat equation with a homogeneous Dirichlet
boundary condition in Section 6.1. This setting fits into the framework of Section 2 and therefore is
used to verify our error bound from Theorem 4.10. To show that the method also performs well in
a more general framework we also test it in a quasi-linear setting. In Section 6.2, we therefore look
at the stochastic porous media equation.

6.1. Semi-linear test example. We look at a stochastic heat equation in a domain D = (0, 1)2 ⊂
R2 with a reaction term and multiplicative noise. More precisely, we look at the equation

(6.1)


dX(t,x) =

(
∆X(t,x) + π2(1 +X(t,x)) sin(πx) sin(πy)

)
dt

+10X(t,x) dW (t,x), (t,x) ∈ (0, 0.1]×D;

X(t,x) = 0, (t,x) ∈ (0, 0.1]× ∂D;

X(0,x) = sin(πx) sin(πy), x ∈ D,

where we abbreviate x = (x, y). In the following, the spaces H and U from the theory in the previous
sections are chosen to be L2(D). The Q-Wiener is defined by its Karhunen-Loève expansion

(6.2) W (t,x) =

∞∑
k=1

(g1(k)
2 + g2(k)

2)−2− ε
2 sin(g1(k)πx) sin(g2(k)πy)βg(k)(t),
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where

g : N → N2, k 7→ (g1(k), g2(k)) =
(
k − 1

2
(h(k)− 1)(h(k)− 2), h(k)− k +

1

2
(h(k)− 1)(h(k)− 2)

)
for h(k) = ⌊ 3

2 + ( 14 + 2(k − 1))
1
2 ⌋, βg(k) are i.i.d. Ft-adapted Brownian motions and ε = 2 · 10−5.

One can show that g is a bijective mapping between N and N2.
First, we note that the initial value X0 is smooth and bounded in space and deterministic. Thus,

Assumption 2.2 is fulfilled for every θX0
∈ [0, 1). The function f is chosen to be x 7→ f(t, v)(x) =

π2(1 + v(x)) sin(πx) sin(πy). Since the sin functions are bounded on D, it follows that f(t, v) lies in
L2(D) for every v ∈ L2(D). To verify ∥Aθf f(t, w)∥H ≤ C

(
1 + ∥Aθfw∥H

)
for every w ∈ dom(Aθf )

for θf ∈ [0, 1
2 ) \ {

1
4}, we refer the reader to the calculation in [23, Equations (20) and (23)]. Thus,

Assumption 2.3 (a) holds. Since the function v appears in a linear fashion, Assumption 2.3 (b) is
also fulfilled, which proves that Assumption 2.3 holds.

Moreover, we can verify that the diffusion coefficient given by B(t, v)u = v · u fits into Assump-
tion 2.5. The well-definedness, the bounds in (2.3), and Assumption 2.5 (b) are verified in [23,
page 121], where we also use the fact that B(t, 0) = 0. It only remains to show that that (2.4) is
fulfilled. For v ∈ dom(AθX0 ), we obtain that

∥B(t, v)∥L(U,H) = sup
∥u∥L2(D)=1

∥v · u∥L2(D) ≤ ∥v∥L∞(D) ≤ ∥v∥
H

2θX0 (D)
≤ C∥AθX0 v∥H ,

where first use that H2θX0 (D) is continuously embedded into L∞(D) for θX0
> 1

2 , see [1, Theo-

rem 4.12]. Additionally, we used that the fractional Sobolev space H2θX0 (D) is the θX0
-interpolation

between L2(D) and H2(D) (compare [26, Theorem 12.4.]) while dom(AθX0 ) is the θX0
-interpolation

between L2(D) and dom(A) = H2(D) ∩H1
0 (D) (see [29, Theorem 4.36]). Since we can equip both

H2(D) and H2(D)∩H1
0 (D) with the same norm, the norms of H2θX0 (D) and dom(AθX0 ) are equiv-

alent. Thus, Assumption 2.5 is satisfied for all θB ∈ [0, 1
2 ) \ {

1
4} and θX0 ∈ ( 12 , 1).

As weight functions we choose

χ0 =


1 if x < 1

2 − δ;
−x+ 1

2+δ

2δ if x < 1
2 − δ;

0 if x > 1
2 + δ

and χ1 =


0 if x < 1

2 − δ;
x− 1

2+δ

2δ if x < 1
2 − δ;

1 if x > 1
2 + δ,

with δ = 0.1. We choose Vh such that the corresponding Th is a Cartesian M by M grid for varying
M ∈ N and h = M−1.

We note that one can show that C(k + 1) ≤ (g1(k)
2 + g2(k)

2) ≤ C(k + 1) for all k ∈ N. Thus, in
terms of Assumption 3.4 the eigenvalues lie in O(k−(2r+1+ε)) for r = 3

2 . For NU = ⌊h− 4
3 ⌋, we then

observe (NU + 1)−r ≤ (h− 4
3 )−

3
2 = h2 ≤ h2θU+1 for all θU ∈ [0, 1

2 ).

For this setting we have two experiments, where compute the L2(Ω;L2(D))-error at the final time.
To approximate the L2(Ω;L2(D))-norm, we use a Monte Carlo simulation with fifty samples in the
form

(6.3) ∥XN
h,τ (tf )−X(tf )∥L2(Ω;L2(D)) ≈

( 1

50

50∑
j=1

∥XN
h,τ (tf , ωj)−Xhref,τref(tf , ωj)∥2L2(D)

) 1
2

,

where Xhref,τref is a reference solution. For the first test, we fix the time step to τ = 10−4 and have
different space discretization with h = 1

5 ·2
−j and j = {1, . . . , 5}. In this case, our reference solution

has been computed with τref = 10−4 and href =
1
5 · 2−7. For the second experiment, we check the

convergence in time. Furthermore, we compare it to the method with the Lie splitting method and
the semi-implicit Euler method (without splitting). The Lie splitting is obtained by replacing Sh,τ

by (I + τAh,2)
−1(I + τAh,1)

−1 in scheme (3.7) while the semi-implicit Euler method is obtained by
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choosing Ah,1 = Ah and Ah,2 = 0 in scheme (3.7). In this case, we consider a varying τ = 0.1 · 2−j

with j = {2, . . . , 7} and fix h = 1/200. The reference solution has been computed with τref = 0.1·2−9

and href = 1/200 using the semi-implicit Euler method. The convergence rates are as expected and
no large difference is visible in these plots. The fact that our method performs similarly well as
the semi-implicit Euler method is a positive result. This means that the splitting error is relatively
small and a code uses our method for parallelization will not make a large additional error. While
the error plot does not show a big difference between the Douglas–Racheford and the Lie splitting
method, when comparing the solutions at the final time, it is visible that the error distribution of
the Douglas–Racheford splitting is more even on the domain and not as concentrated on the overlap
as for the Lie splitting.

10−2 10−1
h

10−4

10−3

10−2

Er
ro
r

Douglas-Rachford
Referece slope 2

10−3 10−2
τ

10−2

10−1

Er
ro
r

Douglas-Rachford
Lie
No splitting
Referece slope 0.5

Figure 1. Left: Space convergence plot of the strong error at the final time for
Experiment 1. Right: Time convergence plot of the strong error at the final time
for Experiment 1.

6.2. Quasi-linear test example. In this experiment, we generalized the problem class to a setting
that is not included in the theoretical result. This is to suggest that the method (3.7) can also be
applied to more general cases. We consider the stochastic porous medium equation

(6.4)


dX(t,x) = ∆X4(t,x) dt+X(t,x) dW (t,x), (t,x) ∈ [0, 0.01]×D;

X(t,x) = 0, (t,x) ∈ [0, 0.01]× ∂D;

X(0,x) = S− 1
5 ( 1

10 − 3
40

4(x− 1
2 )

2

S
2
5

), x ∈ D,

where D = (0, 1) ⊂ R, x = (x, y), S = 0.02. The Q-Wiener process can be stated as

W (t,x) =

∞∑
k=1

k−
5
2−2ε sin(kπx)βk(t),

where βk are i.i.d. Ft-adapted Brownian motions and ε = 10−5. We choose Vh such that the domain
is divided into intervals of equal length h = 1

M , M ∈ N. For the discretized operator Bh, we choose

NU = M , which satisfies Assumption 3.4 for θU ∈ [0, 1
2 ).

For this experiment, we only look at the temporal convergence. Note that we also dropped the
symmetry term in the discrete operator of (5.9). We fix h = 1/200 and consider varying temporal
step sizes τ = 10−4 · 2−j with j = {4, . . . , 10}. The reference solution is computed with href = 1/200
and τref = 10−4 · 2−14 using the semi-implicit Euler method. The error is estimated as described in
(6.3). Again, we compare the Douglas–Rachford splitting with the Lie splitting and the semi-implicit
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Euler method. The observed convergence order is around 0.5 as suggested for the less general case
considered in our theory. Also, the errors of the different schemes do not differ much. As for such a
nonlinear problem, the parallelization of code is even more relevant than in the linear setting, this
is a promising result.

10−7 10−6
τ

10−4

4×10−5

6×10−5

2×10−4

3×10−4

Er
ro
r

Douglas-Rachford
Lie
No spli  ing
Referece slope 0.5

Figure 2. Time convergence plot of the strong error at the final time for Experi-
ment 2.

Appendix A. Basic results

In this first part of the appendix, we collect some basic inequalities that are of importance
throughout the paper.

Lemma A.1. For a real Hilbert space H, let B ∈ L(H) be given and let A fulfill Assumption 2.1.
For every ζ ∈ [0, 1], it follows that

∥BA−ζ∥L(H) ≤ C∥BA−1∥ζL(H)∥B∥
1−ζ
L(H).

Proof. For the proof, we define the constant Cζ =
∥BA−1∥L(H)

∥B∥L(H)
. Together with an application of the

semigroup bounds (2.2) and (2.1), we find

∥BA−ζ∥L(H) ≤
∥∥BA−ζ(I − e−CζA)

∥∥
L(H)

+
∥∥BA−ζe−CζA

∥∥
L(H)

≤ ∥B∥L(H)

∥∥A−ζ(I − e−CζA)
∥∥
L(H)

+
∥∥BA−1

∥∥
L(H)

∥∥A1−ζe−CζA
∥∥
L(H)

≤ C∥B∥L(H)C
ζ
ζ + C∥BA−1∥L(H)C

ζ−1
ζ ≤ C∥BA−1∥ζL(H)∥B∥

1−ζ
L(H),

which proves the claimed result. □

Lemma A.2. For N ∈ N and tf ∈ R+, consider τ =
tf
N and tk = kτ for j ∈ {1, . . . , N}. For every

n ∈ {1, . . . , N} and ζ ∈ [0, 1), it follows that

τ

n∑
k=1

t−ζ
k ≤ C and τ

n∑
k=1

t−1
k ≤ 1 + ln(n).

Proof. We use that for every s ∈ (tk−1, tk) it follows that t
−ζ
k ≤ s−ζ . Thus, we obtain

τ

n∑
k=1

t−ζ
k ≤ τ1−ζ +

n∑
k=2

∫ tk

tk−1

s−ζ ds = τ1−ζ +
t1−ζ
n − τ1−ζ

1− ζ
≤ C
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and analogously for ζ = 1, we find

τ

n∑
k=1

t−ζ
k ≤ 1 +

n∑
k=2

∫ tk

tk−1

s−1 ds = 1 + ln(tn)− ln(τ) = 1 + ln(n).

□

Lemma A.3. Let a, b ∈ R+
0 and N ∈ N be given. Further, for all n ∈ {0, . . . , N}, let un ≤

a+ b
∑n−1

k=0 uk be fulfilled. Then it follows that un ≤ aenb.

For a proof, we refer to [6].

Appendix B. Auxiliary dG results

The following lemmas are some basic bounds for the dG setting considered in Section 5.2. For
the exact notation in this subsection, we refer the reader to Section 5.2 for an explanation.

Lemma B.1. For every p ∈ [1,∞], there exists Cχ(p, κ) = Cχ ∈ R+ such that for all T ∈ Th, all
e ∈ Fh such that e ⊂ ∂T and vh, a κ-th degree polynomial restricted on T , it follows that

∥vh∥Lp(e) ≤ Cχh
− 1

p

T ∥vh∥Lp(T ).

For a proof, see [35, Lemma 1.52]. In this lemma, we explicitly state the constant Cχ, because
the lower bound of σ depends on Cχ. For more theoretical information on the magnitude of Cχ, we
refer to [35, Remark 1.51 and Remark 1.53] and [15, Section 12.2].

Lemma B.2. For all vh ∈ Vh and T ∈ Th, it follows that

|∇vh|L2(T )d ≤ Ch−1
T ∥vh∥L2(T ).

The constant C is dependent on the space Vh, but is independent of h and vh.

For a general proof, we refer to [35, Lemma 1.44].

Lemma B.3. For all T ∈ Th, it follows that

∥v∥L2(∂T ) ≤ C ∥v∥
1
2

L2(T )

(
h−1
T ∥v∥L2(T ) + ∥∇v∥L2(T )d

) 1
2

for every v ∈ H1(T ), where C is independent of h and T .

A proof can be found in [35, Lemma 1.49].

Appendix C. Abstract discretization

The following lemmas show how to bound the error of the space-discretized semigroup in a dG
setting. This kind of result for possibly non-selfadjoint operators A can be found in [32, Theorem 2
and 3] for a finite element setting. A suitable generalization can be found in lecture notes published
by Crouzeix [8]. For the sake of completeness, we state the proofs.

Lemma C.1. Let Assumptions 2.1 be fulfilled. Let φ ∈ (0, π
2 ) be given such that Sφ = {λ ∈ C : φ <

| arg(λ)| ≤ π} lies in the resolvent set ρ(A). For all λ ∈ Sφ, it follows that

∥A(λI −A)−1∥L(HC) ≤
|λ|

dist(λ, Sc
φ)

,

where Sc
φ = C \ Sφ.
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Proof. We consider v ∈ dom(A) and w ∈ H such that (λI −A)v = w is fulfilled. Since (Av, v)H ≥ 0

and R+
0 ⊂ Sc

φ, it follows that
|λ|2

∥Av∥2
H
(Av, v)H ∈ Sc

φ. We can now use this fact to estimate the distance

between λ and Sc
φ as follows

dist(λ, Sc
φ)∥Av∥2H ≤

∣∣∣λ− |λ|2

∥Av∥2H
(Av, v)H

∣∣∣∥Av∥2H =
∣∣λ∥Av∥2H − λλ(Av, v)H

∣∣
= |λ||(Av,Av − λv)H | = |λ||(Av,w)| ≤ |λ|∥Av∥H∥w∥H .

Dividing the inequality by ∥Av∥H and inserting the definition for w into the left-hand side of the

previous inequality, we find ∥A(λI −A)−1w∥HC ≤ |λ|
dist(λ,Sc

φ)∥w∥H . This proves our result. □

Lemma C.2. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled. For every t ∈ (0, tf ], it follows that

(C.1) ∥e−tA − e−tAhPh∥L(H) ≤ C
h2

t
.

Proof. In the following, let φ ∈ (0, π
2 ) be given such that Sφ = {λ ∈ C : φ < | arg(λ)| ≤ π} lies

in both ρ(A) and ρ(Ah). Using the integral form of an analytical semigroup, see [34, Chapter 1,
Theorem 7.7], and choosing a φ̃ ∈ (φ, π

2 ), we find that

(C.2) e−tA − e−tAhPh =
1

2πi

∫
Γφ̃

e−tλ
(
(λI −A)−1 − (λI −Ah)

−1Ph

)
dλ,

where Γφ̃ := {λ ∈ C : | arg(λ)| = φ̃}. Note that this is well-defined since Γφ̃ ⊂ Sφ. For the following
analysis, we decompose the integrant into the two parts

e−tλ(λI −A)−1 − (λI −Ah)
−1Ph

= e−tλ
(
(λI −A)−1 − (λI −Ah)

−1
)
Ph + e−tλ

(
(λI −A)−1 − (λI −Ah)

−1Ph

)
(I − Ph) = Γ1 + Γ2.

Some algebraic manipulations give us the following norm bound for Γ1

∥Γ1∥L(HC) =
∥∥e−tλ

(
(λI −A)−1 − (λI −Ah)

−1
)
Ph

∥∥
L(HC)

= |e−tλ|
∥∥A(λI −A)−1

(
A−1(λI −Ah)A

−1
h − (λI −A)A−1A−1

h

)
Ah(λI −Ah)

−1Ph

∥∥
L(HC)

= |e−tλ|
∥∥A(λI −A)−1

(
A−1

h −A−1
)
Ah(λI −Ah)

−1Ph

∥∥
L(HC)

≤ |e−tλ|
∥∥A(λI −A)−1

∥∥
L(HC)

∥∥A−1
h Ph −A−1

∥∥
L(H)

∥∥Ah(λI −Ah)
−1Ph

∥∥
L(HC)

.

For the norm of Γ2, we use that due to the projection operator I−Ph we obtain (λI−Ah)
−1Ph(I−

Ph) = A(λI −A)−1A−1
h Ph(I − Ph) = 0. This leads to

∥Γ2∥L(HC) =
∥∥e−tλ

(
(λI −A)−1 − (λI −Ah)

−1Ph

)
(I − Ph)

∥∥
L(HC)

= |e−tλ|
∥∥((λI −A)−1 −A(λI −A)−1A−1

h Ph

)
(I − Ph)

∥∥
L(HC)

≤ |e−tλ|
∥∥A(λI −A)−1

∥∥
L(HC)

∥∥A−1 −A−1
h Ph

∥∥
L(H)

.

Since both A and Ah satisfy Assumption 2.1 (a) (in the case of Ah we change H to Vh equipped
with the ∥ · ∥H -norm), we can apply Lemma C.1 to obtain

∥A(λI −A)−1∥L(HC) ≤
|λ|

dist(λ, Sc
φ)

and ∥Ah(λI −Ah)
−1Ph∥L(HC) ≤

|λ|
dist(λ, Sc

φ)
.

Combining the above bounds with Assumption 3.3 (g), we find that∥∥e−tλ(λI −A)−1 − (λI −Ah)
−1Ph

∥∥
L(HC)
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≤ ∥Γ1∥L(HC) + ∥Γ2∥L(HC)

≤ |e−tλ|
∥∥A(λI −A)−1

∥∥
L(HC)

∥∥A−1
h Ph −A−1

∥∥
L(H)

∥∥Ah(λI −Ah)
−1Ph

∥∥
L(HC)

+ |e−tλ|
∥∥A(λI −A)−1

∥∥
L(HC)

∥∥A−1 −A−1
h Ph

∥∥
L(H)

≤ Ch2|e−tλ|
( |λ|2

(dist(λ, Sc
φ))

2
+

|λ|
dist(λ, Sc

φ)

)
.

It remains to insert this previous bound in (C.2), which then shows that

∥e−tA − e−tAhPh∥L(H) ≤ C

∫
Γφ̃

∥∥e−tλ((λI −A)−1 − (λI −Ah)
−1Ph)

∥∥
L(HC)

dλ

≤ Ch2

∫
Γφ̃

|e−tλ|
( |λ|
dist(λ, Sc

φ)
+

|λ|2

(dist(λ, Sc
φ))

2

)
dλ

= Ch2
(∫ ∞

0

e−tr
( r

dist(re−iφ̃, Sc
φ)

+
r2

(dist(re−iφ̃, Sc
φ))

2

)
dr

+

∫ ∞

0

e−tr
( r

dist(reiφ̃, Sc
φ)

+
r2

(dist(reiφ̃, Sc
φ))

2

)
dr

)
= Ch2

(∫ ∞

0

e−tr
( 1

sin(φ̃− φ)
+

1

sin2(φ̃− φ)

)
dr = C

h2

t
,

where we used that for φ̃ ∈ (φ, π
2 ), it holds that dist(re

±iφ̃, Sc
φ) = r sin(φ̃− φ). □

Lemma C.3. Let Assumptions 2.1 and 3.3 hold, then it follows that

∥(e−tA − e−tAhPh)A
−1∥L(H) ≤ Ch2,

Proof. We begin to split the error into three parts

∥(e−tA − e−tAhPh)A
−1∥L(H) ≤ ∥(A−1 −A−1

h Ph)e
−tA∥L(H) + ∥A−1

h (Phe
−tA − e−tAhPh)∥L(H)

+ ∥e−tAhPh(A
−1
h Ph −A−1)∥L(H) := Γ1 + Γ2 + Γ3.

Using Assumption 3.3 (g), the error terms Γ1 and Γ3 can be bounded by Ch2. It remains to bound
Γ2. To do this, we define

eh(t) := A−1
h (Phe

−tA − e−tAhPh).

This function is a solution to the initial value problem given by

(C.3)

{
e′h(t) +Aheh(t) = (Ph −A−1

h PhA)e−tA, t ∈ (0, tf ],

eh(t) = 0

Applying the structure of (C.3) to Γ2, we subdivide it into the two following terms

Γ2 = ∥eh(t)∥L(H) ≤
∥∥∥ ∫ t

0

e−(t−s)Ah(Ph −A−1
h PhA)e−sA ds

∥∥∥
L(H)

≤
∥∥∥∫ t

2

0

e−(t−s)Ah(Ph −A−1
h PhA)e−sA ds

∥∥∥
L(H)

+

∫ t

t
2

∥∥e−(t−s)Ah(Ph −A−1
h PhA)e−sA

∥∥
L(H)

ds

=: Γ2,1 + Γ2,2.

To bound Γ2,1, we integrate by parts, apply Assumption 3.3 (g) and (2.1) to then find

Γ2,1 =
∥∥∥e− t

2Ah(PhA
−1 −A−1

h Ph)e
− t

2A − e−tAh(PhA
−1 −A−1

h Ph)
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−
∫ t

2

0

e−(t−s)Ah(AhPhA
−1 − Ph)e

−sA ds
∥∥∥
L(H)

≤
∥∥e− t

2AhPh(A
−1 −A−1

h Ph)e
− t

2A
∥∥
L(H)

+
∥∥e−tAhPh(A

−1 −A−1
h Ph)

∥∥
L(H)

+
∥∥∥∫ t

2

0

Ahe
−(t−s)AhPh(A

−1 −A−1
h Ph)e

−sA ds
∥∥∥
L(H)

≤ Ch2 + Ch2

∫ t
2

0

(t− s)−1 ds ≤ Ch2.

Next, we bound Γ2,2 by using Assumption 3.3 (g) and (2.1). We then see that

Γ2,2 ≤
∫ t

t
2

∥∥e−(t−s)AhPh(A
−1 −A−1

h Ph)Ae−sA
∥∥
L(H)

ds ≤ Ch2

∫ t

t
2

s−1 ds ≤ Ch2.

Combining the bounds for Γ1, Γ2,1, Γ2,2, and Γ3, we obtain the claimed result. □

Appendix D. Higher convergence

Under additional assumptions on the operator Ah and its decomposition, we can improve the
convergence result and thereby characterize better where the loss of convergence order compared to
a non-split method comes from. This approach is inspired by [22].

Lemma D.1. Let Assumptions 2.1, 3.1, 3.3 be fulfilled and assume additionally that Ah,1 and Ah,2

commute and are self-adjoint. For Sh,τ given in (3.8), it follows that

(D.1)
∥∥e−tnAhPh − Sn−1

h,τ (I + τAh,2)
−1(I + τAh,1)

−1Ph

∥∥
L(H)

≤ C
τ

tn

for all n ∈ {1, . . . , N}.

Proof. The proof follows similar arguments as in [22, Lemma 2.1]. For a more compact notation, we
will abbreviate

S̃h,τ := (I + τAh,1)
−1(I + τ2Ah,1Ah,2)(I + τAh,2)

−1

in the following proof. Inserting the definition of Sn−1
h,τ , it follows that

Sn−1
h,τ (I + τAh,2)

−1(I + τAh,1)
−1 = (I + τAh,2)

−1S̃n−1
h,τ (I + τAh,1)

−1.

With this in mind, we begin to decompose the right-hand side of (D.1) into three parts that we

consider separately. Together with the abbreviation Ãh := (I + τAh,1)
−1Ah(I + τAh,2)

−1, we find
that ∥∥e−tnAhPh − Sn−1

h,τ (I + τAh,2)
−1(I + τAh,1)

−1Ph

∥∥
L(H)

=
∥∥e−tnAhPh − (I + τAh,2)

−1S̃n−1
h,τ (I + τAh,1)

−1Ph

∥∥
L(H)

≤
∥∥e−tnAhPh − (I + τAh,2)

−1e−tn−1Ah(I + τAh,1)
−1Ph

∥∥
L(H)

+
∥∥(I + τAh,2)

−1
(
e−tn−1Ah − e−tn−1Ãh

)
(I + τAh,1)

−1Ph

∥∥
L(H)

+
∥∥(I + τAh,2)

−1
(
e−tn−1Ãh − S̃n−1

h,τ

)
(I + τAh,1)

−1Ph

∥∥
L(H)

=: ∥Γ1Ph∥L(H) + ∥Γ2Ph∥L(H) + ∥Γ3Ph∥L(H).

First, we look at Γ1 in more detail. In the following, we apply the equality (I + τAh,ℓ)
−1 =

I − τAh,ℓ(I + τAh,ℓ)
−1, ℓ ∈ {1, 2}, Lemma 4.1 (ii), the fact that Ah,ℓA

−1
h = A−1

h Ah,ℓ due to the
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commutivity and the semigroup properties (3.3) and (3.4) of Ah, (I + τAh,2)
−1τAh,2 = I − (I +

τAh,2)
−1 and find

∥Γ1Ph∥L(H)

=
∥∥e−tnAhPh −

(
I − τAh,2(I + τAh,2)

−1
)
e−tn−1Ah

(
I − τAh,1(I + τAh,1)

−1
)
Ph

∥∥
L(H)

≤
∥∥(e−τAh − I)e−tn−1AhPh

∥∥
L(H)

+ τ
∥∥(I + τAh,2)

−1Ah,2e
−tn−1AhPh

∥∥
L(H)

+ τ
∥∥e−tn−1AhAh,1(I + τAh,1)

−1Ph

∥∥
L(H)

+ τ2
∥∥(I + τAh,2)

−1Ah,2e
−tn−1AhAh,1(I + τAh,1)

−1Ph

∥∥
L(H)

≤
∥∥(e−τAh − I)A−1

h Ahe
−tn−1AhPh

∥∥
L(H)

+ τ
∥∥(I + τAh,2)

−1Ah,2A
−1
h Ahe

−tn−1AhPh

∥∥
L(H)

+ τ
∥∥e−tn−1AhAhA

−1
h Ah,1(I + τAh,1)

−1Ph

∥∥
L(H)

+ τ
∥∥(I + τAh,2)

−1τAh,2e
−tn−1AhAhA

−1
h Ah,1(I + τAh,1)

−1Ph

∥∥
L(H)

≤ C
τ

tn−1
.

Thus, we have a suitable bound for Γ1. We now turn to Γ2 and look at this summand in more detail

Γ2 = (I + τAh,2)
−1

(
e−tn−1Ah − e−tn−1Ãh

)
(I + τAh,1)

−1

= (I + τAh,2)
−1AhA

−1
h

(
e−tn−1Ah − e−tn−1Ãh

)
Ã−1

h Ãh(I + τAh,1)
−1

= (I + τAh,2)
−1Ah

[
− e−(tn−1−s)AhA−1

h Ã−1
h e−sÃh

]s=tn−1

s=0
Ãh(I + τAh,1)

−1

= (I + τAh,2)
−1Ah

∫ tn−1

0

e−(tn−1−s)Ah
(
A−1

h − Ã−1
h

)
e−sÃh ds Ãh(I + τAh,1)

−1

= (I + τAh,2)
−1Ah

∫ tn−1
2

0

e−(tn−1−s)Ah
(
A−1

h − Ã−1
h

)
e−sÃh ds Ãh(I + τAh,1)

−1

+ (I + τAh,2)
−1Ah

∫ tn−1

tn−1
2

e−(tn−1−s)Ah
(
A−1

h − Ã−1
h

)
e−sÃh ds Ãh(I + τAh,1)

−1

=: Γ2,1 + Γ2,2.

For Γ2,1, we use integration by parts to find

Γ2,1 = (I + τAh,2)
−1

∫ tn−1
2

0

A2
he

−(tn−1−s)Ah
(
A−1

h − Ã−1
h

)
e−sÃh ds (I + τAh,1)

−1

− (I + τAh,2)
−1Ah

[
e−(tn−1−s)Ah

(
A−1

h − Ã−1
h

)
e−sÃh

]s= tn−1
2

s=0
(I + τAh,1)

−1

=

∫ tn−1
2

0

A2
he

−(tn−1−s)Ah(I + τAh,2)
−1

(
A−1

h − Ã−1
h

)
(I + τAh,1)

−1e−sÃh ds

−Ahe
− tn−1

2 Ah(I + τAh,2)
−1

(
A−1

h − Ã−1
h

)
(I + τAh,1)

−1e−
tn−1

2 Ãh

+Ahe
−tn−1Ah(I + τAh,2)

−1
(
A−1

h − Ã−1
h

)
(I + τAh,1)

−1.

(D.2)

where we inserted that the operators (I+τAh,2)
−1 and Ah as well as Ãh and (I+τAh,1)

−1 commute

because of the commutativity of Ah,1 and Ah,2. Next, we state a bound for (I + τAh,2)
−1(A−1

h −
Ã−1

h )(I + τAh,1)
−1. First, we recall the definition Ãh = (I + τAh,1)

−1Ah(I + τAh,2)
−1 and find

∥(I + τAh,2)
−1(A−1

h − Ã−1
h )(I + τAh,1)

−1Ph∥L(H)
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= ∥(I + τAh,1)
−1A−1

h (I + τAh,1)
−1Ph −A−1

h Ph∥L(H)

≤
∥∥(I + τAh,1)

−1A−1
h

(
(I + τAh,1)

−1 − I
)
Ph

∥∥
L(H)

+
∥∥((I + τAh,1)

−1 − I
)
A−1

h Ph

∥∥
L(H)

= τ
∥∥(I + τAh,1)

−1A−1
h Ah,1(I + τAh,1)

−1Ph

∥∥
L(H)

+ τ
∥∥(I + τAh,1)

−1Ah,1A
−1
h Ph

∥∥
L(H)

≤ Cτ
∥∥Ah,1A

−1
h Ph

∥∥
L(H)

≤ Cτ,

where we inserted (I + τAh,1)
−1 − I = τAh,1(I + τAh,1)

−1, the commutativity of Ah,1 and Ah as
well as Lemma 4.1 (ii). Then we can apply the semigroup bound (3.2) to find

∥Γ2,1Ph∥L(H)

≤
∫ tn−1

2

0

∥∥A2
he

−(tn−1−s)AhPh

∥∥
L(H)

∥∥(I + τAh,2)
−1

(
A−1

h − Ã−1
h

)
(I + τAh,1)

−1Ph

∥∥
L(H)

×
∥∥e−sÃhPh

∥∥
L(H)

ds

+
∥∥Ahe

− tn−1
2 AhPh

∥∥
L(H)

∥∥(I + τAh,2)
−1

(
A−1

h − Ã−1
h

)
(I + τAh,1)

−1Ph

∥∥
L(H)

∥∥e− tn−1
2 ÃhPh

∥∥
L(H)

+
∥∥Ahe

−tn−1AhPh

∥∥
L(H)

∥∥(I + τAh,2)
−1

(
A−1

h − Ã−1
h

)
(I + τAh,1)

−1Ph

∥∥
L(H)

≤ Cτ

∫ tn−1
2

0

(tn−1 − s)−2 ds+ C
τ

tn−1
+ C

τ

tn−1
≤ C

τ

tn−1
.

We can use a similar argument to show that ∥Γ2,2Ph∥L(H) ≤ C τ
tn−1

. The difference is that in (D.2)

we use integration by parts but change the role of the two functions. Additionally, we need to apply
(3.2) for Ãh. This is possible since Ah,1 and Ah,2 are commutable and self-adjoint which implies

that Ãh is self-adjoint and therefore in particular sectorial. This shows that ∥Γ2Ph∥L(H) ≤ C τ
tn−1

.

It remains to bound ∥Γ3Ph∥L(H). We begin to rewrite S̃h,τ as follows

S̃h,τ = (I + τAh,1)
−1(I + τ2Ah,1Ah,2)(I + τAh,2)

−1

= (I + τAh,1)
−1

(
(I + τAh,1)(I + τAh,2)− τAh

)
(I + τAh,2)

−1 = I − τÃh,

where we inserted the abbreviation Ãh = (I + τAh,1)
−1Ah(I + τAh,2)

−1 in the last step. Then we
can bound ∥Γ3Ph∥L(H) as follows

∥Γ3Ph∥L(H) ≤
∥∥e−tn−1ÃhPh − S̃n−1

h,τ Ph

∥∥
L(H)

=
∥∥e−(n−1)(I−(I−τÃh))Ph −

(
I − τÃh

)n−1
Ph

∥∥
L(H)

.

In the case that Ah,1 and Ah,2 are commutable and self-adjoint, we know that S̃h,τ = I − τÃh is
self-adjoint. Additionally, the eigenvalues of the operator are between 0 and 1, which can be deduced
from the proof of Lemma 4.2. Thus, applying the functional calculus theorem [7, Theorem 2.7.11(b)],
it will be sufficient in the following to find a bound for |e−(n−1)(1−λ) − λn−1| for λ ∈ [0, 1]. To this
end, we denote g(λ) := e−(n−1)(1−λ) − λn−1 and will find g’s extrema for λ ∈ [0, 1]. We note that
g(0) = e−(n−1) and g(1) = 0 are finite and will look for further local extrema of g in the open interval
(0, 1). The derivative of g is given by g′(λ) = (n − 1)e−(n−1)(1−λ) − (n − 1)λn−2. Setting this to
zero implies that every candidate λ∗ for a local extremum fulfills e−(n−1)(1−λ∗) = λn−2

∗ . First, we
assume that such a value λ∗ is a maximum. Then we find

g(λ∗) = e−(n−1)(1−λ∗) − λn−1
∗ = e−(n−1)(1−λ∗) − λ∗e

−(n−1)(1−λ∗)

≤ max
λ∈[0,1]

e−(n−1)(1−λ) − λe−(n−1)(1−λ) = max
λ∈[0,1]

1

n− 1
(n− 1)(1− λ)e−(n−1)(1−λ) ≤ τ

tn−1
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as xe−x ≤ 1 for all x ∈ R+
0 . In case λ∗ is a minimum, we argue in a similar way using that

minλ∈[0,1]
1

n−1 (n − 1)(1 − λ)e−(n−1)(1−λ) ≥ 0. This shows that |e−(n−1)(1−λ) − λn−1| ≤ 1
n−1 is

fulfilled for all λ ∈ [0, 1]. Altogether, we have showen that Γ3 ≤ τ
tn−1

. □
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