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ABSTRACT. We consider a fully discretized numerical scheme for parabolic stochastic partial dif-
ferential equations with multiplicative noise. Our abstract framework can be applied to formulate
a non-iterative domain decomposition approach. Such methods can help to parallelize the code
and therefore lead to a more efficient implementation. The domain decomposition is integrated
through the Douglas—Rachford splitting scheme, where one split operator acts on one part of the
domain. For an efficient space discretization of the underlying equation, we chose the discontinuous
Galerkin method as this suits the parallelization strategy well. For this fully discretized scheme,
we provide a strong space-time convergence result. We conclude the manuscript with numerical
experiments validating our theoretical findings.

1. INTRODUCTION

In this paper, we aim to develop an efficient numerical approximation for a class of stochastic
partial differential equations (SPDEs) with multiplicative noise, which take the form:

dX(t) = [-AX(t) + f(t, X (t))] dt + B(t, X (¢)) dW(t), te (0,tf],

(L) X(0) = Xo.

Here, X (t) evolves in a real Hilbert space H up to a finite time ¢;. In this class of equations, A is
a linear, typically unbounded operator on the Hilbert space H, while the drift term f(¢, X (¢)) and
the diffusion term B(t, X (t)) are possibly nonlinear but assumed to be Lipschitz continuous with
respect to X (¢). Examples of semi-linear SPDEs include phase-field models, the Nagumo equation,
and fluid flow problems (see [28] for comparison). In these models, the noise can represent small-
scale structures arising from thermal fluctuations, which are absent in deterministic models, it can
account for the variability in wave speed or stochastic forcing.

SPDEs are an important class of equations because stochastic noise can enhance the underlying
model, making it more realistic. Given their relevance in various applications, studying efficient
numerical approximation methods for SPDEs is crucial. While these types of equations have gained
increased attention in recent years, their numerical approximation still lags behind that of their
deterministic counterparts. Our goal is to address this gap by developing a framework, which
includes numerical approximations using a domain decomposition approach for Equation (1.1).

Since stochastic equations typically exhibit lower regularity due to the presence of noise, we do
not focus on high-order methods, as they are unlikely to provide significant benefits in such low-
regularity settings. Instead, we aim to establish a theoretical foundation for an efficient numerical
approximation method that can be parallelized.
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Domain decomposition methods are powerful tools for solving partial differential equations. For
a general introduction, we refer the reader to [10,30,36,38]. These techniques divide a large problem
into several smaller subproblems, which can be computed in parallel, provided that appropriate com-
munication between subproblems is handled. There are various strategies for this communication.
One common approach involves iterative methods, where the subproblems are solved sequentially,
allowing for information exchange between them. This process continues until a desired error toler-
ance is achieved. However, while this method can yield accurate solutions, the iterative procedure
incurs additional computational costs. To avoid the overhead of iterative schemes, we incorporate
the decomposition directly into the time integration using an operator splitting method. Similar
non-iterative overlapping domain decomposition approaches for deterministic equations have been
studied in [2, 12,13, 14,18, 19,31, 39]. By embedding the decomposition into the time integration
process, we aim to achieve efficient parallel computation without the need for costly iterative refine-
ments.

In the context of stochastic equations, less research has been conducted on domain decomposition
methods. A few works have explored this direction within the realm of random differential equations,
examples are [5,33]. Our results are most comparable to those in [3,4,24]. In [4], the authors
focus on the stochastic heat equation, which is similar to our case, but with a more restrictive
setup. Specifically, our approach is more general regarding the operator A: we allow for a non-
selfadjoint operator without requiring it to have a compact inverse. Furthermore, our framework
accommodates a nonlinear perturbation f and multiplicative noise with a coefficient B. In contrast,
[24] examines the nonlinear Schrédinger equation, which belongs to a different class of problems.
The closest comparison to our work is [3], where the authors also propose a domain decomposition
method based on operator splitting. While this is conceptually similar to our approach, their focus
is on semi-discretization, whereas we present a full discretization, incorporating both time and
spatial discretization. This distinction enables us to perform a more comprehensive error analysis.
Additionally, our solution framework differs from theirs. This allows us to significantly lower spatial
regularity assumption. This ensures both theoretical robustness and practical efficiency in solving
the stochastic partial differential equations we consider.

For the time discretization, we use an implicit method with respect to the unbounded operator
A for stability reasons. As a result, solving implicit equations at each step of the time discretization
is necessary. Using the semi-implicit Euler method as a starting point with the initial condition
X0 = Xy, the discretization takes on the following form

(I +7A)X2 = X7+ 7f (a1, X770) 4 Bltn1, X7 ) (W (tn) = W(ta-1))

for n € {1,...,N}. To expedite the solution of these implicit equations, we propose an operator
splitting method, decomposing the operator A into two linear operators A = A; + A;. We em-
ploy a variant of the Douglas—Rachford splitting method, first introduced in [11]. This approach

approximates the backward Euler step (I + 7A4)~! through
(I +’TA)_1 = (I + T(Al + AQ))_I =~ (I+ TAQ)_l(I +TA1)_1(I + T2A1A2).

A similar framework is explored in [18, 19], where convergence for fully discrete schemes using
Douglas—Rachford and Peaceman—Rachford splitting is analyzed for deterministic, homogeneous
equations. However, they assume bounds on the discrete operators, which can be challenging to
prove. We show how these bounds can be verified through assumptions that are easier to check
in practice. The Douglas—Rachford splitting scheme is a first-order method, similar to the well-
known Lie splitting method. Its advantage lies in the error structure. Our primary application
uses a decomposition of A through an overlapping domain decomposition, i.e. we decompose A into
operators A; and As, each acting on a portion of the domain. In this setting, the Douglas—Rachford
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splitting error is more evenly distributed and not as heavily concentrated in the overlap region as is
typical for the Lie splitting error. Including the splitting scheme in the time discretization, starting
from X% = X,, we proceed as follows

(T+7AN)I+7A)X" = (T + 72 A1 AN X 47 f (b1, X2 D 4+ Btp_1, X2 H (W (tn) — W(tn_1)),

where n € {1,..., N}. Note that we will actually analyze a variant of this method with a different
first time step that has some better theoretical properties. For simplicity, we will stick to this
simplified version in the introduction.

The time discretization is combined with a spatial discretization. For the spatial discretization,
let Vi, = span{p1,..., 0} be a finite dimensional subspace of H. Then, the fully discretized

solution X}' = Zij\i(lh) al'p; leads to the following algebraic system for the coeflicients:

Ma" = (I +7Apo) "(I+7Ap1) (I + 72Ap 1 Ap o) Ma™ ™t
+ (L +7Ap2) "L+ 7Ap1) (T fatn1, X;?;l) + Bp(tn-1, Xﬁ;l)(W(t") — W(tn-1))),

where the mass matrix is given by (M); ; = (i, ¢;) - An issue for parallelization arises when the
mass matrix M does not have a block structure. This block structure is even missing for the standard
finite element method, as M then becomes tridiagonal in the one dimensional case. This lack of
locality hinders efficient parallelization. While mass lumping can be a useful tool to diagonalize
the mass matrix, this typically requires high regularity assumptions on the solution that we cannot
expect in our setting. Therefore, we opt for a spatial discretization that yields a more suitable mass
matrix. Examples include spectral Galerkin methods and discontinuous Galerkin (dG) methods. We
will concentrate on dG as this does not require any knowledge on the eigenfunctions of A. Similar
space discretizations have been explored in [20,21] for different problems. Despite our emphasis
on domain decomposition with dG methods, the convergence proof is general, and the assumptions
outlined in Section 3.1 allow for the application of other spatial discretizations and the splitting in
Section 3.2 does not have to be based on a domain decomposition. For the convergence analysis, we
use elements from the approach of [28], who proved convergence for SPDEs using a backward Euler
scheme. As splitting schemes need additional requirements for the error bound, it is to be expected
that our error bounds do not correspond with the non-split result. Nevertheless, we can provide
improved bounds under additional commutativity assumptions on A; and As, following a similar
strategy to [22].

The paper is organized as follows. In Section 2, we provide all the necessary assumptions on the
data of (1.1), state the solution concept and an existence and regularity result for such a solution.
With this in mind, we explain all the details for the full discretization in Section 3. This includes
a general spatial discretization framework and the temporal discretization with a variation of the
Douglas—Rachford splitting scheme. For this general framework, we then provide explicit error
bounds in Section 4. For the error bounds, we state some needed auxiliary results, which we then
combine to prove our main result in Theorems 4.10 and 4.12. Our main application of the theoretical
framework is then explained in detail in Section 5. We verify that dG fits in our general spatial
discretization framework and state a splitting of the operator needed for the Douglas—Rachford
splitting, which is based on a domain decomposition approach. This setting is then further considered
in our numerical example in Section 6 where we confirm our findings through tests. Finally, needed
auxiliary results are summarized in Appendices A-D.

2. PROBLEM DESCRIPTION

In the following section, we introduce the necessary notation and assumptions needed for Equa-
tion (1.1). We abbreviate RT := (0,0), Rj := [0,00) and Ry := (—00,0]. Further, we assume that
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ty € R" is a given finite end time and (H,(-,-) .| - ||z) is a real Hilbert space. The underlying
filtered probability space for the stochastic equation is denoted by (€2, F,{F¢}ic(o,¢,], P), which sat-
isfies the usual conditions. In the following, the constant C € R™ is generic and can change from
line to line, but it is always independent of the temporal and spatial discretization parameters, T
and h, respectively. The possibly unbounded operator A in the parabolic Equation (1.1) fulfills the
following assumption.

Assumption 2.1. Let the linear operators A: dom(A) C H — H and A;: dom(A4,) C H — H,
¢ € {1,2}, be given such that A = A; + Az on dom(A4;) N dom(A43) C dom(A). Moreover, the
operators fulfill the following criteria.
(a) The operator A is a densely defined, positive operator on H. Furthermore, the operator A is
sectorial. That is there exists ¢ € (0, 5) such that the sector S, = {A € C: ¢ < |arg(\)| <
m} and zero lie in the resolvent set p(A). More precisely, for all A € S, it follows that

_ C
||(A_ )\I) 1||£(H(;) < W7

where H¢ is the complexification H + iH of the real space H.
(b) For £ € {1,2}, the operator AyA~': H — H is a well-defined, bounded operator.

Note that in this paper, we follow the same convention as in [28, Definition 1.75] for the definitions
of (non-)positive and (non-)negative operators. With the previous assumption in mind, we observe
that since A is sectorial there exists A € R such that the range of A — Aol is H. Together
with the fact that —A is a positive (therefore also dissipative) operator the range condition implies
that the semigroup denoted by e %4, t € R(J{ , is a semigroup of contractions on H, compare [34,
Chapter 1.4, Theorem 4.3]. Since A is sectorial, the semigroup e~*4 is also analytic, compare [34,
Chapter 1.5, Theorem 5.2]. Given —A generates an analytic semigroup and 0 € p(A), we obtain
some useful bounds. For ¢ € RT, it follows that

(2.1) [ASe™ | pry < Ct¢ forall t € RT,

and for ¢ € (0,1] it holds that

(2.2) JA™(I — e )| gy < Ot for all t € RT.

For a proof of these results, we refer to [34, Chapter 2.6., Theorem 6.13]. A definition for the

fractional operators A¢, ¢ € R, used in the bounds can be found in [34, Chapter 2.6].

In the following assumptions, we choose parameters 6 with corresponding indices that are con-
nected to the regularity of the coefficients. These parameters are fixed throughout the paper. When-
ever we use ( € R;{ , this should be interpreted as a more general variable parameter that changes
depending on the context.

Assumption 2.2. For a fixed p € [2,00) and 0x, € [0,1), the initial condition Xo: @ — H is a
Fo-measurable random variable such that || A%%0 Xo|| o (0. m) < C.

Next, we state the exact assumptions needed for the nonlinear perturbation f of Equation (1.1).

Assumption 2.3. Let f: R x H — H and 0y € [0,%) be given. The following conditions are
fulfilled.

(a) For all v € H and w € dom(A%), it follows that
1F o)l < C(L+llvllm) and  [|A% f(t,w)|m < C(1+ |AY w]m).
(b) For all v,w € H and s,t € [0,ty], it follows that

1£(s,0) = f(t,w)]l gy < C(ls — ]2 + o — w]l ).
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The next step is to define the setting for the stochastic part of Equation (1.1). First, we begin
with the Wiener noise W.

Assumption 2.4. Let the operator @ be a non-negative definite symmetric operator of trace class
on a Hilbert space (U, (-,);, || - [[o). Moreover, let {W(t)}ic(0,¢,) be a given Q-Wiener process that
is adapted to the filtration {F¢}ie(0,¢/]-

For two Hilbert spaces H; and Hy, we denote the Hilbert space of Hilbert—Schmidt operators
by HS(H1, Hz). This space is equipped with the norm || E|ys#,,m,) = /tr(E*E), where tr is the
trace operator. In order to state the assumptions on the noise term, we first recall the definition of
the Cameron—Martin space, compare [28, Section 10.3]. For Uy = Q%U, the Cameron—Martin space
LY is given by the set of linear operators E: Uy — H that fulfill

1ElL == 1EQ? |usw.m) = 1Bl nswy,m) < o0

Assumption 2.5. Let B: [0,tf] x H — L) and 05 € [0, §) be given. The following conditions are
fulfilled.

(a) For all v € H and w € dom(A%?), it follows that

(2.3) IB(t.)llrg < C(L+lvllm), A% B(t,w)lley < C(1+[|A™w] )
and for all u € dom(A%%0)
(2.4) IB(t, w)llcw,my < C(L+ [[A%0u] ),

where 0x, is chosen as in Assumption 2.2.
(b) For all v,w € H and s,t € [0,%y], it follows that

1B(s,v) = Bt )]y < C(Is — 1> +[lv —wlly ).

In this paper, we work with the mild solution of Equation (1.1). Under the assumptions stated
above, let us recall the solution concept. A predictable H-valued process {X(t)}:ejo,t,) is called a
mild solution if

t
IP(/ IX (@)% dt < +oo) ~1
0
and if for all ¢ € [0,], it holds P-a.s. that

t t
(2.5) X(t)=e X, + / e (=945 (s, X (5)) ds + / e~ =94B(s, X (5)) AW ().
0 0
Moreover, we recall that for B € L2(0,t; LP(£2; LY)) the following Burkholder-Davis-Grundy in-
equality

t P % ty 1

(2.6 (e[ sw || [ Beaw)|]) <c( [ 1B R ds)’
te(0,t5) ' Jo H 0 2

holds. For a proof, we refer to [27, Theorem 6.1.2]. With our assumptions, we have the following

existence and regularity result.

Theorem 2.6. Let Assumptions 2.1-2.5 be fulfilled. Then there exists a unique mild solution to
Equation (1.1) up to modifications. Assuming that 0x, € [0p,0p + ), the solution fulfills the
following two regularity bounds

(2.7) sup | A0 X (1) ]| o(o;m) < C
te(0,ty)
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and
- _ 1X(#) = X(8)llzr(o:m)
OO0 DO B RH) T oy eit [t — smROx00D)

<C.

(2.8) Ry

Proof. For a proof, we refer to [23, Theorem 1] when choosing o = 5 and r = 0. Note that this proof
only covers coefficients f and B that are independent of . However, adding a time dependence as in
Assumptions 2.3 and 2.5 does not further complicate the proof. Compare also [25, Section 2.5-2.6],
where the coefficients are time dependent but the regularity assumptions are slightly different. [

3. DISCRETIZATION

In the coming section, we provide a full discretization scheme for our underlying stochastic Equa-
tion (1.1). We begin by stating the setting for the spatial discretization in Section 3.1. With this
setting in mind, we can then add a time stepping method to obtain a fully discretized method in
Section 3.2. The final scheme is stated in (3.7).

3.1. Spatial discretization. For the space discretization, we choose a set {Vj}tper, I C RT, of
finite-dimensional subspaces of H. Recall that the constant C' is always assumed to be independent
of the spatial discretization parameter h. Since V}, is a subset of the Hilbert space H, we can use
both the inner product (-,-)y and its corresponding norm || - |z on the space.

Assumption 3.1. The bounded projection operator P,: H — V}, fulfills || (I—Py)v||g < Ch?||Av||u
for all v € dom(A).

Remark 3.2. Due to Assumption 3.1, we obtain
(I = Po)A ey < Ch* and  ||I — Pyl < C.
Together with the interpolation result from Lemma A.1, for ¢ € (0,1), we then find that
(= P)A i) < CH% or (I = Pu)ollar < O A0 g
for all v € dom(A¢°).

On V},, we state approximating operators to the continuous operators introduced in the previous
section. We begin with an approximation of the (unbounded) operator A and its split operators A;
and A;. We need the discretization of A to be positive and bounded with constants independent
of h w.r.t. a suitable norm in V. To state the needed assumptions for this, we introduce a second
norm || - [lv;, on V4, which is induced by an inner product (-, -);, and fulfills
(3.1) lorllzr < Cllopllv, for all vy, € V.

The idea is that this additional norm is a discrete counterpart to the typical norm on the variational
space V := dom(Az).
Assumption 3.3. Let Assumptions 2.1 and 3.1 be fulfilled and let the norm || - ||y, be given as in
(3.1). Further, let the operators Ay, Ap 1, Ap2 € L(V},) fulfill the following conditions.

(a) The operator Aj, is strongly positive, i.e.

(Ah’l)}“vh)H > CthH‘z/h for all vy, € Vj,.
(b) The operator Ay, is bounded w.r.t. || - ||v;, in Vi,. More precisely, it holds that
!(Ahvh,wh)g‘ < CthHVhHwhHVh for all vy, wy, € V3.

(c¢) The operators fulfill Ay, = Ap 1+ Ap2 in V).
(d) The operators Aj 1 and Ay o are non-negative operators in Vj, w.r.t. (-,-)g.
(e) For £ € {1,2}, it holds that ||Ah,gPh||£(H) < Ch™2.
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(f) For ¢ € {1,2}, it holds that
||(PhAg — Ah,ZPh)'UHH < CHA’UHH for all v € dOIIl(A)
(g) The operator Ay, fulfills that [[A=" — A, ' Pyl 2y < Ch2.

In the following, we need the two bounds (2.1) and (2.2) also for the discretized operator Aj,.
First, we show that the operator Ay, is sectorial. On top of that, we need to verify that the constant
C' in the inequalities (2.1) and (2.2) does not depend on h. To verify these properties, the spaces
X and Z from [12, Section 1.7.1] are chosen to be (Z,(-,*) .l - [1z) = (Va, (;-)y, 5| - [lv,) and
(X, () xsll - Ix) = (Va, () g5 |l - ). This choice of space fits into the assumptions of [12,
Section 1.7.1]. Thus, with [12, Theorem 2.1] and Assumptions 3.3 (a)-(b) we obtain that A is
sectorial with an angle ¢, € (5, 7). It then follows that Ay, is a densely defined, positive, sectorial
operator on V;,. Without loss of generality, we can always pick ¢, and ¢ from Assumption 2.1 (a)
such that both A and A;, are sectorial with the same angle that we refer to as ¢ in the following. The
constant to bound [|(Ax Py — M)~ 2z is then independent of h for A € S,. With this in mind,
we can now state the bounds (2.1) and (2.2) for Ap, where C is independent of h, compare |

)

Chapter 2.6., Theorem 6.13] or [42, Section 2.7.7] for a proof. More precisely, we have that for
(e RT

(3.2) |AS e~ 4 Pyl sy < Ct™¢ for all t € RY,

and for ¢ € [0, 1]

(3.3) |4, (I — e APyl ooy < Ct° for all t € RT.

For the discretizations of f and B, we add suitable projections to finite-dimensional subspaces. This
can be done as follows for the function f

(34) fh: [O,tf] X H— Vy: (t,v) — th(t,’l)).
Due to the projection properties, this function can easily compared to the original function. For the

discretized version of B, we need some additional assumptions that we summarize in the following.

Assumption 3.4. Let Assumption 2.4 be fulfilled, let 6y € [0, %) given and let {eg}ren be the
eigenfunctions with their corresponding eigenvalues {qi }ren of @ that build an orthonormal basis
of U. For r € R{ and ¢ € R*, the eigenvalues fulfill ¢ = O(k~(2"+1%)). Further, let U}, be a finite-
dimensional subspace of U given by U, = span{es,...,en, } such that (Ny +1)7" < Ch?0v+1 The

orthogonal projection on Uy, is denoted by
(3.5) Py: U — Uy,

With this in mind, we are now prepared to state the discretized version of the noise operator B
(3.6) By : [0,tf] x U = HS(Uo, Vi) : (t,v) — PrB(t,v)Py.

Lemma 3.5. Let Assumptions 2.1, 2.3, 2.5, 3.1, and 3./ be fulfilled and let fr, and By be given as
in (3.4) and (3.6), respectively. For all u € dom(A%%0), v,w € H and s,t € [0,t¢], it follows that

(i) | fu(s,0) = fu(t,w)llm < C(ls — 82 + v — wl|#);
(ii) | PnB(t,u) — Bu(t, u)llrg < Ch2vT (1 + | A%oul|y);
(iii) || Bn(s,v) — Bu(t,w)|rg < C(ls — t2 + v —w|g).

Proof. First, we observe that (i) follows by an application of Assumption 2.3 (b)
1
1fn(s,0) = fult,w)lm = || Pa(f(s,0) = f(t,w))[|y < C(ls =87 + lv —wn).
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For the proof of (ii), we apply Assumption 2.5 (a) and obtain
1
[1PnB(t, u) = Br(t, u)lrg = |1PnB(t, w)(I — Pu)llry < 1B w)llcw,mll(I = Pu)Q2 lusw,v)
< O+ | A%oull ) (T = Pu)Q? ausw.v)-

We then obtain the claimed result by combining the previous bound with

I = Po)Q2 sy = ( i Qk)% < C( i k*<2”+1+5>)

k=Ny—+1 k=Ny—+1

W=

oo 1
<Wp+1)7 (3 ) <o,
k=Ny+1
where we applied Assumption 3.4. The last remaining step is to prove (iii). This can be done using
Assumption 2.5 (b) and the fact that the norm of a projection operator is less than one, which yields

[ Bn(s,v) = B(t,w)||l Ly = [[PnB(s,v)Pu — PpB(t,w)PullLg
< |1B(s,v) = B(t,w)llpg < C(|s —t|z + [[v — wl|g)-
[l

3.2. Temporal discretization. The temporal discretization method that we add to the spatial
discretization from the previous subsection is a Douglas—Rachford splitting method. In this method,
we decompose the operator Aj into two parts Ay 1 and Ay, 2 with Ay = Ay 1+ Ap 2. Here, we solve
two sub-steps containing Ay 1 and A 2 instead of one step only containing A;,. The advantage is
that when the numerical method is parallelized less communication is needed between processors.

First, let us fix the notation used on the temporal discretization in the paper. We choose an
equidistant time grid with ¢, = n7 and a step size 7 = tﬁf for N e Nand n € {0,...,N}. We now
state X}’ to approximate the exact solution X (t,) at a grid point t,, n € {1,...,N},

Xy . = Py Xo,

X o= +7An2) M(I 4+ 7Ap1) (X)) + 7fn(to, X7 1) + Br(to, X )W (t1)),

Xp o= S Xp 4+ (14 7Ap2) (4 7Ap) (7 fu (b1, X171
+Bn(tn—1, X3 7 )W (tn) = W(ta-1)))

where n € {2,..., N} and

(3.8) Shr =T +7Ap2) HI+7Ap ) M1+ 12An 1A 2).

The inverse operators (I + 7Ap1)"" and (I + 7Ap2)"! are indeed well-defined. Due to the non-
negativity of Ap 1 and Ajp 2 and the fact that they act on finite-dimensional spaces, it follows that
—Ap 1 and —Ap o generate semigroups of contraction, and therefore the inverses are well-defined.
Moreover, both |[(1 +7Ap1) "' Pyl zmy and ||(I +TAp2) " Phllz(m) are bounded by 1, compare [31,
Theorem 3.1].

Note that we approximate e~74% by (I + TAp2) (I + 7Ap1)7! in the first temporal step and
by Sh,- in all coming steps. The reason for this is that Sy . in the first step leads to a CFL-type
condition. Our approximation requires less regularity in the initial value compared to Sy and offers
a simple error recursion.

We can argue inductively that X7’ is F -measurable for every n € {1,...,N}. First, we
observe that the initial value is F3, = Fo-measurable and an element of LP(; H) (Assumption 2.2).
Assuming that Xﬁ;l is F¢,_,-measurable, it follows that X}' is F;, -measurable as a composition of
an F, ,-measurable function and the 73, -measurable increment W (t,,) — W (t,,—1). Moreover, Xj' _

(3.7)
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is an element of LP(2; H) as the operators S,’Z,T(.7—1—7'14;172)’1Ph7 (I+7Ap2) Py and (I+7Ap 1) 1P,
are bounded on H; compare Lemma 4.2 below.

Remark 3.6. When implementing the scheme, this method can be rewritten for more efficiency.
Using the transformation X’ = (I 4+ 7Au2)"'Y;", the method (3.7) is equivalent to

th,r = (I + TAh,l)_ngﬂ— + (I + TAh’l)_l (Tfh(o, Y}ST) + Bh(07 Y}?,T)W(tl))7
Y}:f_r =T+ TAh’l)_l ((2([ + TAh72)_1 — I)Y}:f;l + 7 n(tn-1, YhTf;l)
FBp(tn-1, YT YW (tn) = W(tn-1))) + (I — (I +7An2) Y'Y, nef2,... N}

When comparing the Douglas—Rachford spitting to the Lie splitting, the additional quadratic term
I+ 72Ap 1A appears in the former, compare (3.8). The advantage of this reformulation is that
this quadratic term does not have to be evaluated, avoiding an extra matrix multiplication. This
means that we do not need to evaluate more matrix operations compared to the simpler Lie splitting
method. In the semi-discrete setting, the quadratic term is problematic from a regularity point of
view. Additionally, in a full discretization the product Ay, 1 Aj, 2 is of the order h~%. In the alternative
formulation, such a term does not appear.

To obtain the Xj' -terms, we only need to calculate (I + TAhQ)_thTfT. Note since we compute
I+ TAh,g)_th’fT within every step, we obtain every X', which we therefore can save without any
additional computations.

4. CONVERGENCE ANALYSIS

We can now turn to the main analytical results of this paper. In the coming section, we prove
explicit bounds for the error of our numerical scheme (3.7) in Theorem 4.10 and 4.12 To provide
this result we begin with some auxiliary statements collected in the coming lemmas. In Section 4.1,
we state some useful results from terms that appear in the error bound. These can then be used
in the results in the following subsection. In Section 4.2, we begin by looking more closely at three
different error parts: the error stemming from the initial condition, the error from the drift term,
and the error obtained by the diffusion term. These three error parts can then be combined into the
main result at the end of the subsection.

4.1. Basic estimates. We begin to provide two basic results about certain operator products to
stay bounded. This helps to shift around certain operators and prove the desired bounds.

Lemma 4.1. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled. Then it follows that
(i) |AnPhA™ | () < C;
(ii) || An,e Ay Prll e < C.
Proof. To prove (i), we insert Assumptions 3.3 (e) and (g) and obtain
1AW PR AT 20y < [|ARPR (AT = A Pi) oy + 1Pall ooy < CRT20% + 1.
For (ii), we use Assumptions 3.3 (e)—(g) and 2.1 (b) to find
| Ane Ay, Prll ooy
< ||Ane (45, Py — PhA71)||[:(H) + || A e PhA™ ) 2oy
< || An,ePhllzm || Ay P — A71||L(H) + || (Ane P — PhAK)A71}|£(H) + | PrAcA™ | ooy
< Ch2R* + C+ || AcA™ ooy < C.
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The following bound shows that the norm of Si! - (I+7Ap2)~ " is bounded by one for every n € N.
Note that we include (I + 7Ap2)~" to handle the quadratic term.

Lemma 4.2. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled. Further, let Sy~ be given as in (3.8).
Then for every n € N, it follows that

1S (I +7An2) " ey < 1.

Proof. The proof is inspired by some arguments from [15, Lemma 3.1]. First, we rewrite Sy (1 +
TAp2)" ! as follows

S}?,T(I‘FTAh’Q)_l = ((I+TAh 2)_1(I+TAh 1)_1(I+T2Ah 14, 2))n(I+TAh’2)_1
I+TAh2 (I+TAh1 1(I+T AhlAhQ)(I"’TAh’Q)_l)n
= (I +7Anz) 1( (I +7An1) " (T = 7An) (I — 7Ap2)

+ (I+7’Ah,1)(1+TAh,2))(I+TAh,2)_1)

1 1 \"
(41) = (I+TAh’2)_1 (§(I+TA]—L’1)_1(I— TAh’l)(I — TAh’Q)(I"_TAh,Q)_l + 5[) .

In the next step, we show that the operators (I + 7A, 1) Y(I — 7Ap1)Py, and (I — 7Ap2)(I +
TAhg)_lPh are non-expansive. This follows from the fact that for every v, € V;, we obtain
I(I 4+ 7An1) " (I = TAp1)onl
= H(I + TAh,l)_lvh”%[ — 27 ((I + TAhyl)_lvh, Ah,l(I + TAhyl)_l’Uh)H + HT(I + TAh’l)_lAh’l’UhH%{
< H(I + TAhJ)_l’UhH%{ + 27 ((I + TA}Ll)_th, Ah71(I + TAh,l)_lvh)H + HT(I + TAh,1)_1Ah71Uh||%{
= |(I + 7400) (L + 7 An)onlF = lonllF
where we used Assumption 3.3 (d). Analogously, the same follows for (I — 7Ap2)(I 4+ TAp2) " Py.
Using the bound

1 1
Hi(l 47 AR) N = AR (I — TAp2) (I + TAp2) " Py + §1H£(

1 _ _ 1
S 5”([""7’14}11) 1(.[_TAh,l)(I_TAh72)(I+TAh’2) 1Ph’|£(H)+§ S 1
n (4.1), it follows that the L(H)-norm of S} (I +7Ap2)~" Py is bounded by one. O

The following two lemmas show that the difference between the semigroup e~ "4* generated by
the Aj, and either (I +7Ap2) (I +7Ap1)7! or Sy, lie in O(¢) for all ¢ € [0,1].

Lemma 4.3. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled. Then for all values ¢ € [0, 1], it follows
that

H(I—|— TAp2) (e_TA’L e TAh72)_1(I + TAhJ)_l) PhA_CHL(H) < Cre.

Proof. We prove this lemma using an interpolation result. For this, we begin to prove the bound
for { = 0, then ¢ = 1 and provide the bound for all the in-between values using Lemma A.1. For
the case ¢ = 0, we use (3.2) and Lemma 4.1 (ii) to find

||BH£(H) = H(I + TAh’Q)(e_TAh — (I +7'Ah,2)_1([ +TAh,1)_1)Ph
<\ + TAn2)e ™ Pyl ey + 1(1 + 7Ap1) ™ Pall e
< e ™ Pl ccay + 1T A2 A, Ane™ ™ Pyl coary + 1

||£(H)
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< 24 CHA}L’QA;LlPhH[I(H)||TAhe_TAhPh||L(H) < C.

This concludes the case for ¢ = 0. Now we look at the case ( = 1 and use the identity (I+7A; 1)"1 =
I—7(I+7Ap1) Y Ap 1 as well as Lemma 4.1 (i), (3.3), and Lemma 4.1 (ii) to find that

IBA™ | 2ay
< H((I—l—TAh 2) —TAn (I—|—TAh)l)_l)AglthL(H)HAhPhA_lH[;(H)
= ||((I+ TAh 2 —TAn _ (I — T(I +TAh,l)ilAhJ))A;lPh||£(H)||AhPhA71||L(H)
C(IA (e ™ = D) Pyl ey + Tl A2 Ay e ™ Pl ooy + 71T+ T A1) A Ay Poll o)
< C(T + THAh,2A}:1Ph||L(H) + T||Ah71A}:1PhH£(H)) < CT.

This concludes the case for ¢ = 1. The result for ¢ € (0,1) follows from Lemma A.1, which implies

that ||BA*CHL(H) < C7€ holds. This completes the proof. O

Lemma 4.4. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled. Further, let Sy, be given as in (3.8).
For all ¢ € 10,1] and s € RT, it follows that

e

[(I +7Anz) (774" = Spr) e PLA™| ) < C s

Proof. Again, we prove this lemma by using an interpolation result from Lemma A.1l. Inserting the
definition of S, , from (3.8) and the identity I = (I+7Ap1) ' +7(I+7Ap1) "  Ap 1, we can rewrite
the left-hand side from the claimed result for ( = 0 as

B:= (I + TAh,g)(eiTAh — Sh;,-)eiSAh'Ph
= (((I + TAh’l)_l + T(I =+ TAh’l)_lAh,l)(I + TAh’Q)e_TAh
— (I + TAh,l)_l(I + T2Ah71Ah72))e_5AhPh
= (I +7Ap1)  + 72T+ 7Ap1) T ApaAp ) (e ™ — 1)
+7(I 4+ 7Ap1) T Ape TAN) AT Ape 54 Py
For the case ( = 0, we use (3.2), the fact that the operators (I + 7Ap 1) ' P, e 7% P,, and
T(I+7Ap1) YAp 1Py =1 — (I +7Ap 1)~ Py are bounded operators, (3.3), Lemma 4.1 (ii), and find
HB”[,(H) < || ((I + TAh71)71 + T2(I + TAh’l)ilAhylAhyg)A;Ll(eiTAh - I)Ph

" T(I + TAhJ)flefTAhPhHl:(H) ||AheisAhPhH£(H)

C
< ST+ a0 A T = D gy

+ |2+ 7An1) T An i An 2 AL (74 — Ph”z:(H)

+ [+ TAhvl)_le_TAhPth(H))

C — -7
< ;(HAhl(e A — I)Pth(H)

+ 7 HT(I+ TAh71)71Ah71Ph HAhaQA;lPhHL‘,(H) ||(eiTAh — I)PhHE(H) + 7')

HL(H)
<ol
S
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This concludes the first part of the proof for { = 0. For the second case { = 1, we use (3.2),
Lemma 4.1 (i), and obtain

|BA~ <|(T+7Ap1) t + 721+ 7AR)  ApiAn2) (e ™4 — 1A 2P,

+7(I+7Ap 1)t Ape T4 A2 P, |Ape ™4 Py |l o | An P A o)

1HL(H)
HL(H)|

< g(H(I + T A) e T AT = DA P o)

+ 7|1 + TAR1) AR A Ay R (e A — I)PhHﬁ(H))

C
=5 (H(I +TAR1) T e 4 T Ape A — I)AEQPhHﬁ(H)

7N+ 7AR1) T Ana Pall o [ An 2 A Pl ey || A7 (e ™4 — I)Ph||L(H))
<Sr
S

where we use the facts that

H(e_TA’L + AR —1)A 2P,

_ T A —2 2
HL(H) = H/o rApe” " drA, PhHL(H) <Cr

and 7(I +7Ap1) YA 1Py =1— (I +7Ap1)" 1P, is a bounded operator, Lemma 4.1 (ii), and (3.3)
in the last step. Now we have proved the claimed bound for both ( = 0 and { = 1. The last step is
to deduce the result for ¢ € (0,1). We can apply Lemma A.1 and obtain

(D) e

S S S

1BA 2

which proves the claim of the lemma. ([

The previous lemmas can now be combined to a bound quantify the difference between the exact
flow given through the semigroup e~ =4 and its approximation Sﬁ;l(l +7Ap2) Y +TAR) " Py
We will state two different versions of this bound. These differ between a minimal set of assumptions

in Lemma 4.5 and additional assumptions on the setting in Lemma 4.5 that provide the same final
error as in [28, Theorem 10.34] for our scheme.

Lemma 4.5. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled. Further, let Sy » be given as in (3.8).
For everyn € {1,...,N} and 6,¢ € [0,1], it follows that

[(e7 A = SRt I+ 7 An2) I+ 7AR) T PR AT gy < C((LIn(n))r? £, <070 p20420=00),
Proof. We begin to split the term that we want to bound into two parts
(et = Sp A 7 Ane) ™ (4 A T P A

<|[(e7 A —e P ) A0 Ly (7 A = SR + T AR ) T I+ T ARL) ) Py
= Fl -+ FQ.

A HL(H)

In the following, we abbreviate B = e~ »4 — e~t»4» P, Then using that the semigroups e *»4 and

e~tr4n are bounded operators as well as Lemmas C.2 and C.3, it follows that

h? _
(4.2) I1Bllccy < Cy Bz < th and || BA™Y |z < CRP.
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Furthermore, we have

_ h2\¢ 4
(4.3) 1Blleqiny = 1Bl ) 1Bl 55y < (€5 ) €' ¢ = 0=
For all given 6 € [0, 1], the value {(1 — 8) also lies in [0, 1] for every choice of ¢ € [0, 1]. Hence, after
applying Lemma A.1 and inserting the third bound of (4.2) and (4.3), it follows that

-0 —10 1-6 2\0 h2¢\ 10 —¢(1-0)1,20+2¢(1—0)
Iy = 1BA™ | ¢y < CUBA™Y | IBIIEcly < (Ch) (Ct—g) = Ot h :

It remains to bound I';. We decompose I's using a telescopic sum structure where we can bound
the single summands with Lemmas 4.2, 4.4, 4.3 and then obtain
Iy = ||(e*t"Ah — SZ;I(I + TAh72)71(I + TAhJ)*l)PhA*QHL(H)

n—1

< Z || (Sg;k_l(l + TAh72)71(I + TA}%Q)(eiTAh’ — Shﬁ)eitkAh)PhAieHE(H)
k=1
+ ||SZ;1(I + TAhVQ)il(I + TAh72) (eiTAh — (I + TAh,Q)il(I + TAh71)71)PhA79H£(H)
n—1
< S+ A e = S ) PA
k=1

+ [T+ 7Ap2) (e ™ — (T +7An2) ' (I + TAh,l)_l)PhA_QHE(H)
n—1
0 T 0
SCTO+Z;JSCG+WMV-

Here we used Lemma A.2 in the last step. This concludes the proof. O

Lemma 4.6. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled, additionally let A1 and Ay be self-adjoint
and commute. Further, let Sy, . be given as in (3.8). For everyn € {1,...,N} and 6,¢ € [0,1], it
follows that

[(e7A = Sp I+ 7Ap) ™ (I + TAh’l)_lph)A_eHC(H)
< Ct 7O (14 In(n)) 7400 4 p20+200-0),

Proof. In the following, we use the same abbreviation as in the proof of Lemma 4.5. Analogously,

we can bound the first error term and find that I'; < Ct;C(l_e)h%*zC(l*e). The difference to the
proof of the previous lemma is how we handle I's. In the following, we abbreviate B = e~tr»4r P, —
S}’f;l(l +7Ap2) Y (I + 7Ap 1)1 P,. Then using that the semigroup e '“* is a bounded operator
as well as Lemmas 4.2, D.1 and the estimate of I's in the proof of Lemma 4.5 for § = 1, it follows
that

~ ~ T ~ _
(4.4) 1Bz <€, IBllegn < O~ and  |[BA ey < Cm(1+1n(n)).
n
Additionally, we can combine the first two bounds from (4.4) and find for all ¢ € [0, 1]
- ~ - TN\ 4 76
(4.5) nmumpﬂwmwwmags(cg)cl<:cg.

An analogous argument combining (4.4) and (4.5) with the help of Lemma A.1 as for I'; in the proof
of Lemma 4.6 shows that

¢
-

T)H = C(1 + In(n))?t; (=0 0+C(1-0),
£,

Ty = 1BA™|l o < (C7(1+n(n))” (€
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O

4.2. Convergence results. With the auxiliary results from the previous subsection in mind, we
can now begin to bound the error of the numerical method (3.7). We begin by considering the
difference between the exact solution in integral form (2.5) at a grid point ¢,, and the numerical
approximation (3.7). To analyze the error in the following subsection, we split the difference into
three parts, as in [28, Theorem 10.34] for the semi-implicit Euler method,

X(tn) — X5 -

= (e_t”A — S;Z;l([ + TAh’Q)_l(I + TAh’l)_l.Ph)Xo

n—1

tht1
+> / e =D A (s, X (s)) ds — 7SE KM + T Ap2) T T+ T AR T it X’,;T)}
k=0 Ytk

n—1 tht1

+> / [e™n=94B(s, X (s)) = Sp I + 7An2) " (I + 7AR1) " Bu(tk, X5 )] dW (s)
k=0 7tk

= FXO + Ff +I'pg.

We will now consider these three terms in more detail in the following lemmas. The error I'x, can
be estimated as follows.

Lemma 4.7. Let Assumptions 2.1, 2.2, 3.1, and 3.3 be fulfilled. For every n € {1,...,N} and
¢ €10,1], it follows that

10 sy < C((1+ () 7"%0 4 7% 200 +260-0%0)),
Proof. This follows directly from Lemma 4.5 and Assumption 2.2. O
In the next step, we consider the error I'y that arises from the drift term.

Lemma 4.8. Let Assumptions 2.1-2.3, 2.5, 3.1, and 3.3 be fulfilled for 6; € [0,0x,) N [0, %) For
everyn € {1,..., N}, it follows that

n—1
||Ff||LP(Q;H) < C(Tmin(exo,%) 4 (1 + ln(n))Tmin(Gf,l) 4 h29f+1) + CTZ ||X(tk) — Xﬁﬂ_”Lf)(Q;H).
k=0

Proof. To bound the error term I'y, we decompose it into four separate terms

n=1l tps
Iy = Z/ (e_(t”_s)A - e_(t"_t’“)A)f(s,X(s)) ds

* :—1 tht1
3 et [T (15X (0) = fltn, X(01) ds
k=0 b

n—1
+7 Z G SZ;’“*(I + T Ap2) NI+ TAR) T P ft, X ()
k=0

n—1
+T Y ST I A T AR) T T A T AR) T (Paf (b X (t)) — fultes XE 1))
k=0

=L+ Tro+ T3+ Tra.
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For I'y 1, we apply the semigroup bounds (2.1), (2.2), use Assumption 2.3 (a) and (2.7) with ( =0
from Theorem 2.6 to find

n—1

HFf 1||LT’(Q m < Z H/ Ae—(tn=9)A 4~ ( o —(s= tk)A)f(s,X(S)) dS’ o
n—=2 .t s —1t
<Cr sup || f(s, X(8)|lLe(:m) + CZ/ |t d ||f(st(s))||Lp(Q;H) ds
$€[tn—1,tn] te n = 5|
tret1
< CT(1+ s{gg]nX( Moty +CZ/ (L 1IX() Lo ey ) ds
EIS

<CO+m)r(L+ sup IXE)imum ) < O+
s sUf

The second term I'y> can be bound by applying the semigroup e~ (tn—t)A

Assumption 2.3 (b) and (2.8) from Theorem 2.6

is a bound operator,

|
A

n

| < He—(tn_tkm/t”l (F(5, X(5)) — (1, X (1)) ds|

k=0 ti Lr(Q;H)
n—1 tht1
< / 1/ (s, X(5)) = f (s X ()| Lo (1)
k=0 Ytk
o e . X(s) - X(t
<C / s = 0D (14 () — XX ’“)0”“’ ) g
k=0 7 tr |5 — ty,[min(0x0:2)
< C«Tmin(Gxo,%) (1 + sup HX(S) - ( )HLl"fﬂ;H)> < Cq—mi“("xov%).
s,te[0,t 5], st \s—t|mm(9xm§)
Next we apply Lemma 4.5 with ¢ € [0,1] such that (1 — 6f) = 5 in combination with Assump-

tion 2.3 (a) and Lemma A.2, which then leads to

n—1

STy [T P E TN 4 m Ay o) TN+ T AR T ) f (e X B Loy
k=0
n—1
h205+1
9 6
<02 (et 0+ G ) M XD
< C((1 +In(n))7% + K2+ (1 + sup \IAng(S)HLm;H))

s€[0,t5]
< O((1 +1In(n)7% + K2+,
where we used (2.7) and 65 < fx, in the last step. The last error term I'; 4 can be bounded with
Lemma 4.2, the facts that [|(I +7Ap1) " Pull gy < 1 and Prf(tg, X (t)) = fn(tr, X (t)) together
with Lemma 3.5 (i). Then, it follows that

n—1

T allLe@umy <70 NSh T +7An2) ™ (T +7An1) ™" (Pt (b, X (1)) — it Xi )| 1o o)
k=0
n—1 n—1

< OTZ oty X (t)) = fu(ties X5 Loy < CTZ X (t) = XK Al Leosm)-
k=0 k=0
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Combining the bounds for I'y 1, I's 2, I'¢ 3, and I'f 4, we obtain the claimed result. g

For the error part I'p arising from the stochastic perturbation, we bound the square of the
L?(Q; H)-norm for notational convenience.

Lemma 4.9. Let Assumptions 2.1-2.5, 3.1, 3.3, and 3./ be fulfilled for 0x, € [0p,0p + %) For
every n € {1,..., N}, it follows that

n—1
HFB”%:D(Q;H) <Cc@+ ln(n))2(7_min(20xo,293,1) + h2(2min(93’9U)+1)) + CTZ 1X () — X}]fﬂ— 2
k=0
Proof. To estimate the I'g-error, we begin to apply Burkholder-Davis-Grundy inequality (2.6) and
decompose the error into four parts as follows

IT 51170 (0:0)

41
<Cy, / e~ =4 B (s, X (5)) — SpFHI + T Aw) "M+ TARL) T Bt X1 |

HLP(Q;Lg) ds

HLP s LO)dS

tht1
+ Z/t |[e= =14 (B(s, X (s)) — B(tk,X(tk)))Hip(Q;Lg)ds

n—1

k+1
+ /t [(e7tn=t)A — Sr k1T 4 7 Ay o) M (I + 7Ap2) " )B(tkvx(tk))Hip(Q;Lg) ds
k=0" "k

th41

+Z/ [SpF =1 + 7 Ap2)” 1(I+TAh’1)*1(PhB(tk,X(tk))—Bh(tk,X,’f’T))Hip(Q;Lg)ds)

= C(FB,l +Ip2+Tpas+ FBA)'

We begin with ' 1. This can be bound by applying the semigroup bounds (2.1), (2.2), Assump-
tion 2.5 (a), and (2.7) with ¢ = 0 from Theorem 2.6. More precisely, we obtain

tht1
Coa= 3 / [ abem =4 (1 o) B, X (5)[2 0,1 45

tkl‘s

B X6 g +cz /

s€[tn 1,tn

(1 + 11X ()70 () ds

tht1
1+OTZ/t ltn — | 1ds) (1+ sup [ X (s )Himm) < C(1+In(n))r.
k

s€[0,ty]

To bound the second term I'p 2, we use Assumption 2.5 (b) and (2.8) from Theorem 2.6, to find

n—1 tht1
I'po= Z/t He_(t"—t’“)A(B(s,X(s)) — B(tkvx(tk)»Hip(Q;Lg) ds

tr41

<CZ/ ||B(S’X(S))_B(tk’X(tk))Hip(Q;Lg)ds
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scnf/

k=0 "tk

tht1 2

X (s) — X (tw)|
|s —tk|min(axov%)

ds < CTmin(29X0 ,1) )

s — tk|mi“<2"Xo’1>H1 n
Lr(;R)

When bounding the third term I' g 3, we can use Lemma 4.5 with ¢ € [0, 1] such that (1 —60p) = %,
combine this with Assumption 2.5 (a) and apply (2.7) from Theorem 2.6 and Lemma A.2. This then
leads to

n—1
i =73 |[(e7 =4 — b 47 4,2) 7 (1 + 7 A1) ™ Pa) Bt X () 1 01,
k=0

n—1 . h293+1 2 0 9
< B — [ B
< C'TkZ:O (T (1+1In(n —k)) + T tk)%> |A B(tk’X(tk))HLP(Q;Lg)
n—1
h2(20+1)
<Cr (7293(1 +1In(n — k))* + )(1 + 1A% X (t) | oo ()

k=0 tn =tk

< C(1+1n(n))* (7205 4 p2(05+1),

The remaining term I'p 4, can be bound by an application of Lemma 4.2 and the fact that the term
(I +7An1) " Prllzm) is bounded. Using Lemmas 3.5 (ii), (iii), and (2.7) from Theorem 2.6, we
then obtain

n—1
F'pa=rT Z HS}Z;’“”(I +7Ap2) (I + A1) (PuB(te, X (tk)) — Bu(te, X7 1)) HQLP(Q;LS)
k=0

n—1

<CrYy <||PhB(tk,X(tk)) = Bi(te, X ()10 (0.19)
k=0
1Bt X (1)) = Bt X 2 ns )
n—1 n—1
< CrR2 D) 3 (1 A0 X (1) 2o ) + O 31X () = X [
k=1 k=0
n—1
< Ch2(20U+1) +Cr Z ||X(tk) - Xf]f,T”%P(Q;H)'
k=0
Combining the bounds for I'g 1, I'p 2, ' 3, and I'p 4, we obtain the claimed result. O

Theorem 4.10. Let Assumptions 2.1-2.5, 5.1, 3.5, and 3.4 be fulfilled for 0x, € 05,05 + %) and
0 € [0, min(fx,, %)) For everyn € {1,...,N}, it follows that
1 (6n) = X ooy < (1 In(n)) (0o 07 02:3) o p2min(0n 0+
+ C(t;ql—oxo)hzexo+2c(1—exo)) + p20st1,

Remark 4.11. For the final time ty = t7, i.e. n = N, we can choose ¢ € [0, 1] such that ((1—0x,) = 1
and obtain the error bound

||X(tN) _ X}IL\,[T”LP(Q;H) < C(l + ln(N))(Tmin(Gxo,GfﬁB,%) 4 thin(QB,GU)-i-l) + Ch2min(9x0’9f)+1.

We additionally included Ct;“l_e)hzg"’%(l_e) in the error bound to include the case of early time

¢(1-0)

steps where t,, cannot be bounded independently of 7. In this case, the parabolic smoothing
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has not decreased the error coming from the initial value. To avoid the pole containing t,,, we can
choose ¢ = 0 and find

X (t,) — X}?,THLP(Q;H) <C(+ ln(n))(Tmin(exo,ef,aB,%) + hzmin(eB,QU)+1) + CpMin(20x,,205+1)
or we keep the pole in the form of
1X(t0) = XJ oty < C(1+ In(n)) (00 050 3) 4 p2min(0.00)41) | o3 201 4 p20r+1
to keep the optimal spatial convergence rate.

Proof of Theorem 4.10. For ¢ € [0,1], we combine Lemmas 4.7, 4.8, and 4.9. This then leads to

X (tn) — X;LI,TH%P(Q;H)
< C||FXU||2LP(Q;H) + C”FfH%P(Q;H) + C”FBH%P(Q;H)
S C(]. + ln(n))2(Tmin(29X0,29f,293,1) + h2(2min(93,0[j)+1)) + Ct’;QC(l*GXO)h2(29xo+2c(1—(9x0))

n—1

+ 24D 4 0 N IX (1) — XE e um)-
k=0

Using the discrete Gronwall’s inequality (Lemma A.3) and taking the square root, we obtain the
claimed result

X (tn) — X;LL,T”LP(Q;H) <C(1+ ln(n))(rmi“("XoﬁfﬁB,%) + h2 min(oB,oU)H)
+ C«(t;C(l—@Xo)h29X0+2C(179X0)) 4 p20s+,

O

Theorem 4.12. Let Assumptions 2.1-2.5, 3.1, 3.3, and 3.4 be fulfilled and let A; and Ay addition-
ally be self-adjoint. For everyn € {1,...,N}, it follows that

X (En) — X5 e llLeoim) < Ct,, <17 0x0) ((1 + In(n))?%o 70x0FC1=0x0) 4 p20xo +20(1=0x,))
+ C(1 +In(n)) 3 (77000 3) 4 pmin(200+1,2))

where ¢ € [0,1].

Proof. The proof follows analogously to the proof of Theorem 4.10. The difference is that we
exchange Lemma 4.5 by Lemma 4.6 in Lemmas 4.7-4.9. More precisely, in Lemma 4.8, we apply
Lemma 4.6 with ¢ = 0 and { = 1 instead of Lemma 4.5 for I'y 3. Additionally, we bound I'p 3 in
Lemma 4.9 using Lemma 4.6 with 6 =0, { = % instead of Lemma 4.5. O

5. EXAMPLE: A FULLY DISCRETIZED DOMAIN DECOMPOSITION SCHEME

In this section, we exemplify the theoretical results. For the abstract Equation (1.1), we state a
more concrete SPDE in Section 5.1 and verify that the equation fits in the framework from Section 2.
Following the problem description, we state the space discretization in Section 5.2 followed by the full
discretization in Section 5.3. In both sections, we verify that the assumptions stated in Sections 3.1
and 3.2 are fulfilled.
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5.1. Continuous problem. We consider the semi-linear stochastic diffusion equation

(5.1)
dX (t,%) = [V - (KGVX(£,%)) + F(t, X (£,%))] dt + B(t, X(£,%)) dW (), (%) € (0,7] x D;
X(t,x) =0, (t,x) € [0,tf] x OD;
X(0,x) = Xo(x), x €D,

where D C R%, d € N, is an open, convex polygon, and t; € R*. The linear operator A is given
through

(5.2) Av(x) = -V - (K(x)Vu(x)), x€D,

where the matrix-valued function K is Lipschitz continuous w.r.t. x, fulfills
(5.3) K e R4 is symmetric

and the eigenvalues of K (x) lie in the interval

(5.4) [Ko, K1] for Ko, K1 € R for almost every x € D.

We interpret A as an unbounded operator in L?(D), i.e. A: dom(A) C L?(D) — L*(D), where
the domain of A is given by dom(A4) = {v € HZ(D) : Av € L*(D)} = H?*(D) N Hi(D). Note
that dom(A) is a dense subset of L*(D) and that ||[v]|gz2(py < C||Av||p2(p) for all v € dom(A),
compare [17, Theorem 9.24] in combination with [16, Theorem 1.4.3.]. For more details on Sobolev
spaces and their norms, we refer the reader to [17, Chapter 6.2].

For our method, we want to split A into two parts A; and As. As a decomposition of the operator
A, we choose a domain decomposition. To specify this, we choose two overlapping subdomains
{D,}?_, of D with a Lipschitz boundary. The union of the two subdomains is D again. On these
subdomains, we define the non-negative weight functions {x,}7_, C W1°°(D). The support of x,
is Dy and the two weight functions form a partition of unity on D and fulfill ||x¢[/ze~p) < 1 for
¢ € {1,2}. Furthermore, we assume that the weight functions are piecewise linear. We define

(5.5) Apw(x) = -V - (e (x)K(x)Vou(x)), £e€{l,2}, xeD,

for v € dom(4y) = {u € H}(D) : Apu € L?*(D)}. Note that dom(A) C dom(A,) is fulfilled. As this
set does not appear in the analysis of the fully discretized method, we do not introduce this in much
detail here but refer the reader to [19, Equation (2.8) and Lemma 2.4] for more details.

The operators A, Aj, and A, fit into the setting of Assumption 2.1, where H = L?(D). First,
we note that since x1 + xo = 1 on D, it follows that A; + Ay = A. Moreover, we can show that
Assumption 2.1 (a) is fulfilled. Since K is positive definite, the operator A is positive, and —A gen-
erates an analytical contraction semigroup, compare [34, Section 3.3]. Furthermore, in our example,
the operator A is additionally self-adjoint. Note that only the constant of Assumption 2.1 (a) is
dependent on [|[Vx¢|| < (pye, which can be linked to the overlap size of the domain decomposition.

Lemma 5.1. Let A and Ay, £ € {1,2}, be given as in (5.2) and (5.5), respectively. Then it follows
that

[ AcA™ | 2 py) < 1+ ClIVxel Lo (e
where C does not depend on . This verifies that Assumption 2.1 (b) is fulfilled.

Proof. For the proof, we look at the operator norm of A, and A~! separately. More precisely, we
can bound the operator norm of the product by

1AL AT 2z2y) < | Aell 2domay 2o AT | 2(p2(D)sdom(a))
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where we equip dom(A) with the graph norm |- || 2(p) +||A-||L2(p). First, we note that the operator
A~t: L?(D) — dom(A) is bounded. It remains to show that A,: dom(A) — L?(D) is bounded. For
all v € dom(A), it follows that
[ Aev]| L2 (D) < IV - (xe KVV) |22 (D) < IxeAv| L2(p) + [VXe - KV L2(p)
[vllz2(p) + [[Av|L2(p) — | Av L2 (D) N | Av| L2 (D)
| Av|| 2y + VXt oo (D) [ KV V|| 2 (D)a
[ Avl|£2(p)

Kl||VX4||L<>°(D)dHVUHL?(D)d

[ Avl| £2(p)

<1+

< 1+ Cl|Vxell poe (pyas

where we used in the last step that dom(A) is continuously embedded in H§ (D) and ||V - || p2(pya is
an equivalent norm in H} (D). O

Moreover, for 0,05 € [0,1), 0x, € [max(0f,05),0p + 1), and U = L*(D), let Xy, f, W, and B
satisfy Assumptions 2.2-2.5.

5.2. Discontinuous Galerkin spatial discretization. When discretizing the SPDE (5.1) in
space, we choose the discontinuous Galerkin method. In the following, we give a short introduction
and explanation of the notation used. For further information, we refer the reader to [15,37].

We discretization the spatial domain D by the mesh 7, which contains the elements T' € Tj,. The
elements T are affine mappings of a reference element T, which is a convex polyhedron in R? with
ng faces. In the following, we denote the diameter of an element T by hp. The value h indicates the
maximum of the diameters hy of elements in the mesh 7;,. We assume that the mash sequence Ty,
fullfills the conditions of [35, Lemma 1.62], and there is a constant C' € RT, independent of h, such
that hp > Ch for all T € T,. Moreover, we assume that |7, £ € {1,2}, is linear on every T € Ty,
for every h. The collection of the edges e of elements T in 7}, is denoted by F}. As one edge can
belong to two elements of 7, at the same time, those two corresponding elements are denoted by
T and T, , where the choice of notation of the two elements is arbitrary but after that the choice
is consistent. If e C 9D, there is only one element T, associated with this particular edge. In the
following, we denote h, = min(hT;r, hT;) if e does not lie on the boundary 0D and h, = hp for
e C 0D. The discretization space is defined as

Vi = {vn, € L*(D) : wp|p € PH(T) for all T € Ty},

where P1(T) denotes the polynomials of at most order 1 on the element T, and vy, |7 is the restriction
of v, to an element T'. An example for a basis for the space V} can be put together by defining
polynomial bases on each element T' € 7T such that every function has its support only in one
element 7. When considering two basis functions ¢; and ¢; of V3, the inner product is (i, ;)4
can only be nonzero if the functions’ support lies on the same element T. Thus, after choosing a
suitable order of the basis elements, the mass matrix (M); ; = (i, ¢;), obtains a block structure.
The blocs represent the elements T' € Tp,.

Moreover, for v € {0,1,2}, we introduce the following broken space H"(7}) on the partition 7y,
compare with [37, Section 2.3],

1
HY(T) = {v € IA(D) : vl € HY(T) for all T € T} with o]l 7, = (3 Iolellin))
TeTh

Note that H°(T) is equal to the Lebesgue space L%(D) and that for v € HY(D), we find that
wllge 7,y = lvllav (). Additionally, for v € dom(A) no jumps appear on the edges e € Fj,
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compare [35, Lemma 4.3]. On an element T, we can then make the following statement for the
L?(D)-projection operator P, that maps L?(D) on V.

Lemma 5.2. For allv € {0,1,2}, m€{0,...,v}, T € T, and v € HY(T), it follows that
(L = Pn) vllmry < Chyp™ ™[0l av(z))
where C' is independent of h and T .

The proof of this lemma follows from [35, Lemma 1.58]. With the help of this lemma, the
projection error of P can be bounded as stated Assumption 3.1, i.e. we observe that

10 =Pl = (310 = Plan)” < (X klolien)”

TeT TeT
< CR?||v| r2(py < CR®||Av|| 12y

is fulfilled for every v € H?(D) N H}(D) = dom(A). To show that V}, fits into Assumption 3.3, we
first need to state some additional definitions. Functions from the discretization space V}, can have
jumps on the edges e € Fj,. Therefore, we define the jump function and average function on an
interior edge e as

1

(5.6) lle = vlgs — vlp- and {v}] = = -]

where T." and T, are the two elements that share the edge e. On an edge on the boundary 9D, the
functions are defined as

(5.7) {v}e = vl = [v]]e.

Furthermore, we also use the following semi-norm related to jumps on the faces. For v € L%(D),

this norm is denoted by
1 3
ol = (3 - EllBe)
eeFy, €

To show that Assumption 3.3 is fulfilled, we need to introduce a suitable norm as mentioned in (3.1).
We choose the norm that is induced by the inner product

1
(Uh’wh)vh = Z (Uthawh|T)H1(T) + Z hf ([Uh], [wh])Lg(e) for all Up, Wh € Vi
TETH ecF, ¢

and then given by

1
(5.8) Il = (- |||H1(Th +1-15.)%

For 0 € R} and K as stated in (5.3)—(5.4), we can now define the discretized operator Ay : Vi, — Vi,
via its corresponding bilinear form aj, through (Apvp, wp) = ap(vk, wy,) for all vy, wy, € V3, where

ap (v, wp) == Z (KVvp, Vwp) 12 (Tyd — Z /{KVvh n, Hwp] d€

TET; F,
(5.9) el et
_Z/{Kth Ile ’Uh df-‘rZ/h’Uh wh
ecFy, ecFy,
for all vy, w, € Vj. Here, n, is the outer pointing normal derivative such that n. := D+ = —Np-

for an inner edge e and n, := ny, for an edge e C IT'. In (5.9), we see four relevant terms in the dG
formulation: the weak formulation of A, the consistency term, the symmetry term, and the penalty
term. For a detailed derivation, we refer the reader to [35, Chapter 4.2.1.1-4.2.1.3]. Note also that
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the discrete operator weakly enforces the Dirichlet boundary condition. The parameter o is chosen
such that Ay is strongly positive.

Lemma 5.3. Let Ap: V, — Vi, be given as in (5.9). Further, let ng be the maximal number of
vertices of an element T € Tn. For o > Cyng, where Cy is from Lemma B.1, it follows that
Ap, is strongly positive and bounded, where the norm || - ||y, is given in (5.8). This ensures that

Assumptions 3.3 (a)—(b) are fulfilled.

This statement follows from the lemmas from [35, Lemmas 4.12 and 4.16] which we combine
with [35, Equation (4.20) and Lemma 4.20]. The discretizations f5: [0,¢¢] x L?*(D) — V} and
By: [0,t¢] x L*(D) — L3 of f and B are given as in (3.4) and (3.6), respectively.

5.3. Full discretization. The operator A;, stated in (5.9) is now split into two separate parts. As
a decomposition of the operator A, we choose a domain decomposition method. We then define
Apg: Vi, =V, that fulfills (A, evp, wr) = ape(vn, wy,) for all vy, wy, € Vj, where

an,o(Vp, wy) 1= Z (XeKNVvp, Vwn) pa(gya — Z /{XeKVvh -1, }Hwp] d€

(5 10) TETh ecFy, V€
=3 [tk Ve ndlds+ Y [ e oun g
ecFy V€ ecFy, V¢ €

for £ € {1,2}. In the following, we go through Assumption 3.3 (c¢)—(g) and prove that A, A1,
and Ay o fit into the setting. The sum property A, = Ap 1 + Ap2 from Assumption 3.3 (c) is a
direct consequence form the sum property of x; and x2. This can easily be observed after inserting
1 = x1 + x2 into (5.10). The next step is to prove the non-negativity of a split operator Ay g,
¢ € {1,2}, i.e. Assumption 3.3 (d). Before we turn to the proof of this result, in the same fashion
as [37, Section 2.7.1] , we first provide an auxiliary result that is of use in the proof for non-negativity.
For this, we keep track of the constants because they give restrictions on the parameter o.

Lemma 5.4. For every T € Ty, every e € Fy, such that e C 0T, the outward pointing normal
derivative ne = ngr|. and vy, € Vi, it follows that
3 2 ~1, 3 2
HX@ vvh|THL2(e)d < CXhT HX@ Vvh”Lz(T)dv
where the constant Cy is stated in Lemma B.1.

Proof. The main idea of this proof is to apply Lemma B.1. We cannot directly apply this lemma

1

though as a function x7 V|7 is not necessarily a polynomial. Note though that in the L?(e)-norm,
a square appears which cancels out the square root. Thus, we rewrite the L?-norm as an L'-norm.
This then enables us to apply Lemma B.1 and we obtain

3 2
X2 Vorlr || 2 oya = IIXeV ORIz 2 VorlTl 1 o)
_ _ 1 2
< CXth ||ngvh|T : vvth”Ll(T)d = CXth“XZQ Vvh‘THLZ(T)d’
where : is the notation used for element-wise multiplication between two vectors. (Il

Lemma 5.5. Let A : Vi, — Vi, be given as in (5.10). Further, let K be as stated in (5.3)—(5.4)
and ng the maximal number of vertices of an element the elements T € T;,. For o > C’XKfKo_lno,
where Cy is from Lemma B.1, and { € {1,2}, it follows that Ay is non-negative on Vj, with respect
to the L*(D)-norm, i.e., for all v, € Vi it holds that (An,eVh, Vn) 2 > 0. This ensures that

Assumption 3.3 (d) is fulfilled.

(D)
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Proof. For all v, € V}, it follows that

(Ah,[vha Uh)LQ (D)

1 1 1 1 1 1
=Y (GKVo x; K2V0n) papya =2 ) [ IXE K Von - e} X7 on] dé

TeTh e€F, v ¢
o1 1
+ Z /h*[XfUhHvah] dg
eeFy, e e

v

HX%K%VU;LHQLQ(DW -2 he%H{x@%KVvh ~ ne}||L2(e)h§% H[XE%W]HL?(e) + a|x§vh|i
ecFy,
= Fl - FQ + F3.

In the remainder of the proof, we want to show that I'y — I's +T's > 0. We begin to apply Cauchy—
Schwartz inequality for sums and obtain

Pa <2( Y hell 06 KV na}[1a0,)) " (0 w2 I 0illa))”

eeFy, ecFy,

< 2( Z heH{Xg%vah ’ ne}”iﬂ(e))Eb{e%Uh JIn+

eckFy,

If e does not lie on 9D, we insert the definition of the average from (5.6). For such an e we can
apply Lemma 5.4 and obtain

101 h2 ., 1 N
M KV0n 1} ny = PN K Vanlgs 14 K Vunly 1) a,
1 1
hEK 1 heKq, 1
S : 17 Vonl s L2y T TIHXE Vonly,- HLz(e)d

1
C2Ki/f he \%, 1 he \3, 1
< 25 () I Vbl + (72) I Tonlzagre )
1
C; K, 1 1
< 2 (I Vonl g e + 1 Vol a0 )
where we use h, = min(hT;r,hT;) in the last step. In a similar way, for an edge e C 9D, we apply
the definition of the average on the boundary (5.7) and Lemma 5.4 to find

héH{Xz%Kv”h : ne}HLZ(e) = CéKlHXK%VUhHLQ(TE)d'

When we reorder the sum, we apply the fact that every element 7" in 7}, is counted ng times in total
after summing over T;” and T for all edges e € F},. We can therefore bound 'y by

1 1
2

1—‘2 < C)%Kl (( Z HX@évvhHiz(T;r)d)E + ( Z HX[%VUhHiz(T;)d) )lxl%th]h

e€Fy,,eZ 0D ec€Fy,,eZ 0D
3 S vl 54
+20% Kl( HXZ VvhHLQ(Te)d) IX¢ vnla,
e€Fy,eCOD

1
<20¢ KKy g (X0 KAVl a) I e,

TETh

1 111 1
=203 K1 Ky *ng ||x7 K2 Voul|r2(pya|Xi val, -
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Applying Young’s inequality for products, we obtain
o < [ K3 Von oy + Ol TG mol val3,.
Thus, for o > O, K2 K, 'ng, we find
(An,evh, v0) 12 (p)
> 11} K3 Vonlaope — X7 K Tonll oy = OB ol onl3, + o i onl), > 0,
which finishes the proof of the lemma. O

Remark 5.6. To our knowledge, no sharp bounds for C, are known. An exception is the case p = 2;
compare [40]. Therefore, we have no sharp bound for the restriction of ¢ which instead has to be
checked numerically.

Lemma 5.7. The operator Ay o defined in (5.10) fulfills that
[ An.ePul L2y < Ch™2.
Thus, Assumption 3.3 (e) is fulfilled.
Proof. Since Ay, ¢ is self-adjoint, we can express the operator norm by

I AnePrllzezpy =  sup  [(AnePrv,v)r2(p)| = sup |(An,evn, va) L2 (D)5
vl L2(py<1 R €V, [|lvnll L2 (py<1

compare [41, Satz V.5.7]. Inserting the definition from (5.10), we find

|(Ah,wh,vh)Lz(D)| < ‘ Z (XgKV’Uh, Vvh)LQ(T)d + 2‘ Z {XEKVUh . ne}[vh] d§
TETh eeF, V¢

| 2 [ loen) ag]

ecFp €

= Fl +F2 +F3

We begin to bound I'y using the Cauchy-Schwarz inequality, Lemma B.2 and maxre7;, h;l < Ch!
to obtain

1 —
=] 3 (K Von Vou) iy | € Y el 1K Vonla e < Chonla -
TETh TETh

We now turn our attention towards I's. From Cauchy-Schwartz inequality, as well as, Lemmas B.1
and B.2, it follows

r=2[ Y / {XK Vo n} o] de|

ecFy, V¢
1 1
2 2
<2( Y HEVo - n}Ee) (D Hnll3ee)
eckn e€Fy,
: ;
< Ch_l( Z vahHQLZ(T)d) ( Z ||Uh||%2(T)) < C'h_QthH%Q(D),
TET TET

For the last remaining summand I', we apply Lemma B.1 and find

g _ _ _
L=| 3 [uptonPdf <n Y ol <O Y lunlacr = Chonlfiacoy

ecFy e ecFy, TETh
Combining the bounds for I'y, 'y, and I's, we obtain the desired result. ([l
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The result of the following lemma is similar sort of the result for Friedrichs’ operators in [20,
Proposition 4.14].

Lemma 5.8. Let Ay and Ap ¢ be defined as in (5.5) and (5.10), respectively. For € € {1,2}, it
follows that
| (Ap,ePr — PhAg)UHLQ(D) < Cl|Av||2(p) for all v € dom(A).

This shows that Assumption 3.3 (f) is satisfied.
Proof. Since (AhlPh — PhAg)v €V, for v € dom(A), we can write that
|| (Ahjph — PhAg)’U sup {((A}%gph — Ag)”U, wh)

2o
thVh,“whHLZ(D):l )

||L2(D) -
First, let us look at the non-discretized operator Ay a bit closer. Using integration by parts, we find

(Aev,wp) p2(py = Z (Xe KV, Vwp) p2(py — Z / (xeKVv-n.)wpy] dE

TeT ecky,
=3 (eKVo,Vur) gy — 3 / {xeK Vv - 0.} ws] dé
T€Th ecFp
-y /{XZKVWL n o] dé+ Y /Xe J[wn] dE,
ecky, eckFy,

where in the first step the boundary terms do not disappear because of the possible discontinuities
of wy,. In the second step, we use the fact that x,K'Vv-n. = {x¢eKVv-n.} and [|[v][[;2(, = 0 for
v € dom(A), compare [35, Lemma 1.23]. With an application of Holder’s inequality we then obtain
that

|((Ah,ZPh - AZ)U7 wh)L2(D)‘

= ‘ Z (Xe KNV (P = I)v, Vwp) 2y — Z /{XKKV (Pp, — Dv-n.}wy] dE
TETh ecFy,
= % [tk v n (B - Doldg+ Y [ v - Delfun] ag
ecky, ecky,
< K Z IV(Pr = D)ol 2 pya [[Vwnll 2(pya
TeETh
+ > H{EV(Py = Do -0} ooy wn]ll 2
eckFy
+ > IHEVwn -0} 2oy 1(Pr = Dl 2
ecky,
t+o Z — I(Ph = Dol 2oy Nwnlll 2oy =: T1 + T2 + T3 + Ty
ecFy 6

To prove the desired bound, we will consider I'y,I's, '3, and 'y, separately. First, for I'y, we can use
Cauchy-Schwarz inequality for sums and then Lemmas 5.2 and B.2

I =K, Z IV (P — I)U||L2(T)'i ||th||L2(T)d
TeTh

<o X m 1 Dol ) (X W 19w e )

TET TET

[N



26 MONIKA EISENMANN, ESKIL HANSEN, AND MARVIN JANS

1 1
(X Mol ) (X Tl )™ = Cllvleo) lwnll o)

TeTh TETh

where we used that [|v]|g2(p) = [[v]l f2(7;,) for a function v € H?(D). For the second term, I'y, we
apply Lemma B.3 and Lemma B.1. Note that Lemma B.1 is formulated for scalar-valued functions
instead of a vector-valued function V (P, — I)v. We can still apply the lemma for the components
of the vector-valued function. With Lemma 5.2 we can then bound the projection error and then
obtain in combination with the Cauchy—Schwarz inequality for sums

Py =Y HEV(Py = Do ned pagey lwnlll e

e€Fy,
2 \} 2 ¢
< (Y MEVP = Do n i ) (D lwallia, )
ecFy, e€Fy
1
_ 2
< (32 WP = Dl (7 1 (Pr = Dol + (P = Dolleer))
TETh
_ 3
X ( > hpt ||wh||2L2(T)>
TETh
), \} : A\
< Ch( Z hT||”HH2(T)) ( Z ||wh||L2(T)) < Cllvllgz(p)llwnll L2 ()
TETh TETh

Similarly, we bound I's by applying Lemmas B.1 and B.2 for the first factor and Lemmas B.1 and
5.2 for the second. An additional application of Cauchy—Schwarz inequality for sums then shows
that

Ty = 3 [{EVwn -0 g 1P — Dol 2

ecky,
1
<e( X METwn n i ) (X 1P - Dl )’
ecFy, ecFy
1 1
<C( X hr IVwnlzagr )" (X2 hrt I = Dolzacry )
TET TET
1
<o 3 nt funlian ) (X W lelhecr ) < Cllunlesco lolsco)
TETh TETh

For the last term I'y, we apply Lemmas B.3, B.1 for the two obtained factors and the fact that
he = min(hT+ shp-) > Ch for every edge e of an element T'. Moreover, we use Lemma 5.2 to bound
the projection error and Cauchy—Schwarz inequality for sums. More precisely, we obtain

Ly=0 ) h ' (Ph = Dolll g2y Nl 2oy

ecFy,
1 1
_ 2 2
< (3 B2 E = Dol ) (D0 lewnllage) )
eeFy ecky,

<o X W B Dol ) (X b e, )

TeTh TETh
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} . :
<C( 3 hlolee ) (X Bt lwliam )" < Cllvlmm lloall o) -
TeTh TETh

Combing the bound for I'; to I'y, we can now prove the claimed result of the lemma

[(An.ePr = PhAe) vl o) = sup ((AnePn = Ae)v,wn) o ) < Cllvllr2(p).-

wh €V, |lwhll 2 (py=1

Since [|[v]|g2(py < C|Av||p2(py for v € dom(A), we have completed the proof of the required state-
ment. O

The last lemma of this section completes the verification of Assumption 3.3.

Lemma 5.9. Let A and Ay be defined as in (5.2) and (5.5), respectively. If o > C’%Q) where C
depends on the mesh, it follows that

A=Y = AL Pl o(ze(py) < CR?,
i.e. Assumption 3.3 (g) is fulfilled.

A proof can be performed in a similar fashion as in [35, Corollary 4.26]. Additionally, we use the
fact that A~ || g2(py < C||v||12(p), compare [17, Theorem 9.24]) for our choice of K.

The lemmas of Section 5 show that the stochastic evolution equation from (5.1) fits into the
theoretical framework of Section 2 and that the dG framework fulfills the assumptions stated in
Section 3. We have therefore verified that our main theoretical convergence result from Theorem 4.10
is indeed applicable.

6. NUMERICAL EXPERIMENTS

In the following section, we will validate our theoretical results through numerical tests. To
implement the dG spatial discretization scheme we used the software module DUNE-FEM [9]. For
the dG approximation, we choose polynomials of at most order one and the parameter o = 3 in (5.9)
and (5.10). We choose o in accordance to empirical findings. We looked at two examples to test
our method. First, we look at a semi-linear stochastic heat equation with a homogeneous Dirichlet
boundary condition in Section 6.1. This setting fits into the framework of Section 2 and therefore is
used to verify our error bound from Theorem 4.10. To show that the method also performs well in
a more general framework we also test it in a quasi-linear setting. In Section 6.2, we therefore look
at the stochastic porous media equation.

6.1. Semi-linear test example. We look at a stochastic heat equation in a domain D = (0,1)% C
R? with a reaction term and multiplicative noise. More precisely, we look at the equation

dX (t,x) = (AX(t,x) +72(1 + X (¢, %)) sin(nz) Sin(ﬂy)> dt

(6.1) +10X (¢, x) dW (¢, %), (t,x) € (0,0.1] x D;
X(t,x) =0, (t,x) € (0,0.1] x 9D
X (0,x) = sin(7z) sin(7y), x € D,

where we abbreviate x = (x,y). In the following, the spaces H and U from the theory in the previous
sections are chosen to be L?(D). The Q-Wiener is defined by its Karhunen-Loéve expansion

oo

(6.2) W(t,%) = D (g1(k)* + g2(k)*) 7>~ % sin(ga (k)wz) sin(g2(k)y) Bycr (¢)
k=1
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where

g NN s (g (8), 92(8)) = (k= S(0() = D(A(R) = 2), h(k) — K+ 3 (h(k) — 1(A(K) — 2)
for h(k) = |3 + (3 +2(k — 1))z ], By(ky are 1i.d. Fy-adapted Brownian motions and ¢ = 2-107°.
One can show that g is a bijective mapping between N and N2.

First, we note that the initial value Xg is smooth and bounded in space and deterministic. Thus,
Assumption 2.2 is fulfilled for every 0x, € [0,1). The function f is chosen to be x — f(¢,v)(x) =
72(1 +v(x)) sin(mx) sin(ry). Since the sin functions are bounded on D, it follows that f(¢,v) lies in
L*(D) for every v € L?(D). To verify ||A% f(t,w)|u < C(1+ ||A% w||x) for every w € dom(A%)
for 65 € [0,4)\ {1}, we refer the reader to the calculation in [23, Equations (20) and (23)]. Thus,
Assumption 2.3 (a) holds. Since the function v appears in a linear fashion, Assumption 2.3 (b) is
also fulfilled, which proves that Assumption 2.3 holds.

Moreover, we can verify that the diffusion coefficient given by B(t,v)u = v - u fits into Assump-
tion 2.5. The well-definedness, the bounds in (2.3), and Assumption 2.5 (b) are verified in [23,
page 121], where we also use the fact that B(¢,0) = 0. It only remains to show that that (2.4) is
fulfilled. For v € dom(A%¥0), we obtain that

1Bt 0)lcwm = suwp v ulrzy < [vlpey < [olly20x, (py < CllA™00]| 1,
|UHL2(D):1

where first use that H2%o (D) is continuously embedded into L>(D) for fx, > 3, see [I, Theo-
rem 4.12]. Additionally, we used that the fractional Sobolev space H?%*o (D) is the fx,-interpolation
between L2(D) and H?(D) (compare [26, Theorem 12.4.]) while dom(A%%0) is the 6, -interpolation
between L?(D) and dom(A) = H2(D) N H}(D) (see [29, Theorem 4.36]). Since we can equip both
H?(D) and H%(D)N H¢ (D) with the same norm, the norms of H%%%o (D) and dom(A%%0) are equiv-
alent. Thus, Assumption 2.5 is satisfied for all 05 € [0, 1)\ {1} and Ox, € (1,1).

As weight functions we choose

1 ifv<$-96; 0 ifz <$-6;
— 1 _1

Xo=1{ =528 ifp <l g and oy =52 ifr <l
0 ifz>1490 1 ifx >3+,

with 6 = 0.1. We choose V}, such that the corresponding 7 is a Cartesian M by M grid for varying
MeNand h=M"1.

We note that one can show that C(k + 1) < (g1(k)? + g2(k)?) < C(k + 1) for all k € N. Thus, in
terms of Assumption 3.4 the eigenvalues lie in O(k~("*1%9)) for = 3. For Niy = |h~5 ], we then
observe (Ny +1)7" < (h™3)~2 = h2 < A2v*L for all 9y € [0, 3).

For this setting we have two experiments, where compute the L?(Q; L?(D))-error at the final time.
To approximate the L?(Q; L?(D))-norm, we use a Monte Carlo simulation with fifty samples in the
form

50 1
1 b
(63) XN (t) = X(t)leueion ~ (55 20 1K (7 w5) = Xnmatr ) 2y )
j=1
where X, , ., is a reference solution. For the first test, we fix the time step to 7 = 10~* and have

different space discretization with h = é 277 and j = {1,...,5}. In this case, our reference solution

has been computed with Tef = 1074 and hyer = % -277. For the second experiment, we check the
convergence in time. Furthermore, we compare it to the method with the Lie splitting method and
the semi-implicit Euler method (without splitting). The Lie splitting is obtained by replacing Sy, -
by (I +7Ap2) (I +7Ap1)"" in scheme (3.7) while the semi-implicit Euler method is obtained by



A FULL SPACE TIME SPLITTING FRAMEWORK FOR SEMI-LINEAR SPDES 29

choosing Ap 1 = Ap and Ap 2 = 0 in scheme (3.7). In this case, we consider a varying 7 = 0.1 - 277
with j = {2,...,7} and fix h = 1/200. The reference solution has been computed with 7yt = 0.1-27°
and hper = 1/200 using the semi-implicit Euler method. The convergence rates are as expected and
no large difference is visible in these plots. The fact that our method performs similarly well as
the semi-implicit Euler method is a positive result. This means that the splitting error is relatively
small and a code uses our method for parallelization will not make a large additional error. While
the error plot does not show a big difference between the Douglas—Racheford and the Lie splitting
method, when comparing the solutions at the final time, it is visible that the error distribution of
the Douglas—Racheford splitting is more even on the domain and not as concentrated on the overlap
as for the Lie splitting.

—— Douglas-Rachford —e— Douglas-Rachford

-=-- Referece slope 2 g Lie

| = No splitting

——- Referece slope 0.5 -

10-2 4

Error

1074 4

T T
1072 107t

FIGURE 1. Left: Space convergence plot of the strong error at the final time for
Experiment 1. Right: Time convergence plot of the strong error at the final time
for Experiment 1.

6.2. Quasi-linear test example. In this experiment, we generalized the problem class to a setting
that is not included in the theoretical result. This is to suggest that the method (3.7) can also be
applied to more general cases. We consider the stochastic porous medium equation

dX (t,x) = AX4(t,x)dt + X (t,x)dW (¢,x), (t,x) € [0,0.01] x D;
(6.4) X(t,x) =0, (t,x) € [0,0.01] x OD;

2
X(0.%) = S~ — HHA), x€eD,

where D = (0,1) C R, x = (z,y), S = 0.02. The Q-Wiener process can be stated as

o0

W(t,x) = k=372 sin(kma) Bu(t),

k=1

where 3, are i.i.d. F;-adapted Brownian motions and € = 10™°. We choose V}, such that the domain
is divided into intervals of equal length h = %, M € N. For the discretized operator By, we choose
Ny = M, which satisfies Assumption 3.4 for 0y € [0, %)

For this experiment, we only look at the temporal convergence. Note that we also dropped the
symmetry term in the discrete operator of (5.9). We fix h = 1/200 and consider varying temporal
step sizes 7 = 107%-277 with j = {4,...,10}. The reference solution is computed with h,et = 1/200
and Tyer = 1074 - 2714 using the semi-implicit Euler method. The error is estimated as described in
(6.3). Again, we compare the Douglas—Rachford splitting with the Lie splitting and the semi-implicit
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Euler method. The observed convergence order is around 0.5 as suggested for the less general case
considered in our theory. Also, the errors of the different schemes do not differ much. As for such a
nonlinear problem, the parallelization of code is even more relevant than in the linear setting, this
is a promising result.

X107* 1/« Douglas-Rachford
Lie

—%— No splitting

X107 1 ___ Referece slope 0.5

Error
S

FIGURE 2. Time convergence plot of the strong error at the final time for Experi-
ment 2.

APPENDIX A. BASIC RESULTS

In this first part of the appendix, we collect some basic inequalities that are of importance
throughout the paper.

Lemma A.1. For a real Hilbert space H, let B € L(H) be given and let A fulfill Assumption 2.1.
For every ¢ € [0,1], it follows that

1BA 2oy < CIBAIS ) IBILS -

IBA™ | 2oy

. Together with an application of the
1Bl 2 (m)

Proof. For the proof, we define the constant C =
semigroup bounds (2.2) and (2.1), we find

1BA ey < [[BASU — M) e
< ||B||£(H)HA_<(I - e_CCA)H[,(H) + HBA_IHL(H)HAl_Ce_CCAHL(H)
< C|Bll e C¢ + CIBA | 2(an CE ™ < CIBATMS 11y 1Bl oy

+ HBA_Ce_

which proves the claimed result. (]

Lemma A.2. For N € N and t; € RY, consider 7 = tﬁf and ty, = k7 for j € {1,...,N}. For every
ne{l,...,N} and ( €[0,1), it follows that

n

TZt,;C <C and TZtlzl <1+ In(n).

k=1 k=1
Proof. We use that for every s € (tx—1,1x) it follows that t,;c < s7¢. Thus, we obtain
n n tr 1-¢ _ 1-¢
t T
—C 1-¢ —¢ — +1=C n
Tkg_ltk <rT +,§_2 s tds=rT1 + 1-¢ <C

tr—1
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and analogously for ¢ = 1, we find

n n th
TZt,:<§1+Z/ s tds=1+1In(t,) —In(1) = 1 + In(n).
k=1 k=2 "tk

Lemma A.3. Let a,b € R} and N € N be given. Further, for all n € {0,...,N}, let u,
a+ bzz;é uy, be fulfilled. Then it follows that u, < ae™.

IN

For a proof, we refer to [0].

APPENDIX B. AUXILIARY DG RESULTS

The following lemmas are some basic bounds for the dG setting considered in Section 5.2. For
the exact notation in this subsection, we refer the reader to Section 5.2 for an explanation.

Lemma B.1. For every p € [1,00], there exists C\(p, k) = Cy € R such that for all T € Ty, all
e € Iy, such that e C 9T and vy, a k-th degree polynomial restricted on T, it follows that

_1
||Uh||LP(e) < CXth ||UhHLP(T)-

For a proof, see [35, Lemma 1.52]. In this lemma, we explicitly state the constant C,, because
the lower bound of ¢ depends on C'. For more theoretical information on the magnitude of C, we
refer to [35, Remark 1.51 and Remark 1.53] and [15, Section 12.2].

Lemma B.2. For all vy, € V}, and T € Ty, it follows that
[Vonlr2(rya < Chztvnll2 (-
The constant C' is dependent on the space Vi, but is independent of h and vy,.
For a general proof, we refer to [35, Lemma 1.44].

Lemma B.3. For all T € Ty, it follows that

1 B 1
1l 2oy < C N0l z2 iy (Rt 0llzz ey + V0l L2 (rya) ®
for every v € HY(T), where C is independent of h and T.

A proof can be found in [35, Lemma 1.49].

APPENDIX C. ABSTRACT DISCRETIZATION

The following lemmas show how to bound the error of the space-discretized semigroup in a dG

setting. This kind of result for possibly non-selfadjoint operators A can be found in [32, Theorem 2
and 3] for a finite element setting. A suitable generalization can be found in lecture notes published
by Crouzeix [8]. For the sake of completeness, we state the proofs.

Lemma C.1. Let Assumptions 2.1 be fulfilled. Let o € (0,%) be given such that S, = {A € C: ¢ <
|arg(A\)| < 7} lies in the resolvent set p(A). For all X € S, it follows that

Al
AN — A)~H < M

where Sg = C\ S,.
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Proof. We consider v € dom(A) and w € H such that (A\] — A)v = w is fulfilled. Since (Av,v),; >0
and Rg C Sg, it follows that %(Av7 v)g € Sg,. We can now use this fact to estimate the distance
between A and S¢, as follows

A2
4wl
= [A[(Av, Av — dv) | = |A[(Av, w)| < M| Av]|z|[w] &

dist(\, S%) | Av[3 < |A (v, v) ||| A][3; = [N Av] = XA(Av, 0)n |

Dividing the inequality by ||Av| g and inserting the definition for w into the left-hand side of the

previous inequality, we find [|A(A — A) " w|| g, < ﬁHwHH This proves our result. O
W

Lemma C.2. Let Assumptions 2.1, 3.1, and 3.3 be fulfilled. For everyt € (0,ty], it follows that

- - h?
(C.1) le™" = ™4 Pall ey < O

Proof. In the following, let ¢ € (0, %) be given such that S, = {A € C: ¢ < |arg(A\)| < 7} lies
in both p(A) and p(Ay). Using the integral form of an analytlcal semigroup, see [34, Chapter 1,
Theorem 7.7, and choosing a ¢ € (¢, §), we find that

(C.2) et _etnp, = 2i e (N — A)T — (M — Ap) TP, d),
T T

where I'g := {\ € C: |arg()\)| = ¢}. Note that this is well-defined since I'; C S,,. For the following
analysis, we decompose the integrant into the two parts

e AN — AT — (M — Ay)7tP,
=e MM —A) T (M —A) )P +e (M —A) = (M - Ay) 'P) (I — Py) =T +Ts.
Some algebraic manipulations give us the following norm bound for I';
IT1ll ey = |le™ ( (M =A™ — (M - Ah)il)PhHL(HC)
= le"M|JAN — A) TN (ATHA = Ap) AL — (AT — A)ATTAL ) Ap(M — Ap) TP,
= e M|JAN — A) (A — AT AN = Ay) TP,
< e[| AN — A)~

HL(HC)

HLZ(H)

2P, — AilHﬁ(H)HAh (M — Ap) ' Py

IHE(HC)HAh HE(HC)'

For the norm of T'y, we use that due to the projection operator I — P, we obtain (A — Ap) 1P, (I —
Py) = A\ — A)7'A; ' P,(I — P,) = 0. This leads to
T2l 2ere) = (™ (M = A) ™" = (A = Ap) T Pu) (I = o)l 2
= le ||((\ = A)™F — AN — A) 1A, P, ) (T - Ph)HL(HC)

< le ™| AN — A)~ AT = AP,

1HL(HC HL(H)’

Since both A and Aj, satisfy Assumption 2.1 (a) (in the case of A, we change H to V}, equipped
with the || - || -norm), we can apply Lemma C.1 to obtain

Al
P T A = An) " Pall gy < —L
[[A(A )" e < dist(X, ) and [ Ax(A n)" Phllecre) < dist(X, %)

Combining the above bounds with Assumption 3.3 (g), we find that

Heft/\(AI _ A)*l — (M — Ah)ilthL(Hc)
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< Tl ecae) + T2l 2o
< |e_t/\|HA()‘I - A)_IHL(HC) HAifPh - A_1||£(H)HAh()‘I — An)"' Py
+le P|JAAT - A ATt = AR,

HL(HC)
)_1H,C(HC ’|£(H)

_ A2 Al
< h2 tA | )
< Chle |((dist()\,S§,))2 * dist(A,s;))

It remains to insert this previous bound in (C.2), which then shows that

e~ — e A Pyl oy < c/F [e™ (AL = A) ™" = (AL = Ap) "' B) | £, AN
@

) Al A2
o [ og( |
< Ch /w e |(dist()\,559)+(dist()\,Sfp))2>d)\

o 2
= Ch2 —tr ! e - 1D d
(/0 ¢ (dist(re—“/’,S;) + (dist(re—w,S;))2> '

2

< r r
+/0 ¢ (dist(reiﬂa,S;) + (dist(re"@,S;)P) dr)
2

e 1 1 h
= Ch? / —tr dr =C—,
( 0 ¢ (Siﬂ((ﬁ — ) + sin2(¢ - gp)) " t

where we used that for ¢ € (¢, 3), it holds that dist(re**?,5¢) = rsin(¢ — ¢). O

Lemma C.3. Let Assumptions 2.1 and 3.3 hold, then it follows that
[(e™ — e Py ) A7 (ay < OR?,
Proof. We begin to split the error into three parts
(™4 — e 4 P ) A 2oy < (A7 = A Pr)e™ Al camy + 14, (Pre ™ — 74" Py) |2
+ e A Pu(Ay P — ANl gy :=T1 + T2 + Ts.

Using Assumption 3.3 (g), the error terms I'y; and I's can be bounded by C'h2. It remains to bound
I';. To do this, we define

eh(t) = A;l(PheitA — eitAh’Ph).
This function is a solution to the initial value problem given by
e, (t) + Apen(t) = (P, — Ay ' PyA)e™ 4, t € (0,t4],
(C.3)
en (t) =0
Applying the structure of (C.3) to I's, we subdivide it into the two following terms

t
Lo = flen()llecn < | / e~ (P, — 4,1 P A)e* ds
0

L(H)
L t
2
< H / e (t=9)An(p, — AP, A)e 34 dSHL(H) +/ He—(t—S)An(ph - A;lPhA)e_SAHL(H) ds
0 3

=: 1—‘2’1 + ].—‘2’2.
To bound T's 1, we integrate by parts, apply Assumption 3.3 (g) and (2.1) to then find

Iy = Hei%Ah(PhAfl - AglPh)e*%A — e (P AT — A7)
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o+

2
- / I e dsH
0 L(H)

< ||e*%AhPh(A*1 _ A}—Llph)e + Hefm"Ph(Afl B A;jlph

%AHL(H) )HL(H)

%
v H/ Ape™ (I P (AT — AP )e A ds|
0 L(H)

%
< Ch? + C’hz/ (t—s)"tds < Ch®.
0
Next, we bound I'y o by using Assumption 3.3 (g) and (2.1). We then see that

s~ tds < Ch2.

t t
—(t—s)Ap -1 _ 4—-1 —sA 2

Ty g/ le (A" = A7 P A=y ds < Ch /

2 2

Combining the bounds for I'1, I'g 1, I'2 2, and I's, we obtain the claimed result. O

APPENDIX D. HIGHER CONVERGENCE

Under additional assumptions on the operator A; and its decomposition, we can improve the
convergence result and thereby characterize better where the loss of convergence order compared to
a non-split method comes from. This approach is inspired by [22].

Lemma D.1. Let Assumptions 2.1, 3.1, 3.3 be fulfilled and assume additionally that Ay 1 and Ap o
commute and are self-adjoint. For Sy given in (3.8), it follows that

_ e _ _ T
(D.1) le=tnAn By — Sp M I+ 7 An2) " (I + 7 AR1) " Pall o gy < ‘i

forallm e {1,...,N}.

Proof. The proof follows similar arguments as in [22, Lemma 2.1]. For a more compact notation, we
will abbreviate

Shr =T +7TAp1) "I+ 72 Ap1An2)(I +7Ap2) ™!
in the following proof. Inserting the definition of Sg;l, it follows that

S,Tll;l(l + TAh,Q)_l(I + TAh}l)_l = (I + TAh’Q)_lg}?;l(I + TAh’l)_l.

With this in mind, we begin to decompose the right-hand side of (D.1) into three parts that we
consider separately. Together with the abbreviation Ay, := (I +7A4p1) " Ap(I + 7Ap2)"", we find
that

le™ APy — SpTH I+ 7 AR2) I+ TAR) T Pl

= |le™" APy — (I + TAp2) ' SENIT + 7AD" Pl oy

< |leTt AP, — (I +7Ap ) te A (1 + TAh,1)71Ph|{c(H)
+ H(I + TAh,2)_1(e_t"71Ah - e_tnfl;‘h)u + 7'f‘lh,l)_lth.c(H)
+ (I +7Ap2) " (e7tnmrdn — SiU+ TAh71)71PhHL(H)

= L1 Pull ey + T2 Prllcay + s Prll o)

First, we look at I'; in more detail. In the following, we apply the equality (I + TA,,)~! =

I —7Ape(I+7Ape)™ Y, € € {1,2}, Lemma 4.1 (ii), the fact that A;L,ZA;I = A,ZIA;M due to the
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commutivity and the semigroup properties (3.3) and (3.4) of Ay, (I +7Ap2) *rApe =1— (I +
TAp2)" ! and find

1Ty Phll (e
= ||eft"Ah'Ph — (I - TAhQ(I + TAhg)il)e*t"*lAh’ (I — TAh,l(I + TAhJ)*l)

< || — pe~tarp,

PhHL(H)
HL‘,(H) +7]|(1 + TAhQ)_lAhﬁG_hklAhPh”L(H)
brlle e Ay (7 + 740 Pl
+ 72| (1 4 T Ap2) " Ange A A (T4 TARD) T Pl oy
< |(em A — I)A;lAhe*t"*IAhPhHL(H) +7||(I + TAM)*lAh,QA,;lAhe*tnflAhPh|}L(H)
7ot A A AL Ay (T4 7 AR ) T Pl

T
tn—l

Thus, we have a suitable bound for I'y. We now turn to I's and look at this summand in more detail

+ TH(I + TAh,Q)71TAh72‘37t"71AhAhA;ZlAh,l(I + TAh71)71Ph||L(H) <C

Fg = (I + TAh,g)_l(e_t"_lAh — e_t"_lgh)(l + TAh71)_1
— (I +7Aps) "AR A (et A — e ot An) AL A, (T4 7 Ay ,) 7!

tn—1 ~

=T+ 7A2)" "4, [ — ef(t"*lfs)AhAglfl;le*SAh} Sio Ap(I+71AR)7"

tn—1 ~ ~ ~
=(I+ TAW)—lAh/O e (sl (At — Ap e *An ds Ay(I+7Ap) ™"

tn—1

= (I + TAhﬁg)_lAh / e_(tnfl_s)Ah (A;l — A;I)Q_SA’L dS Ah(I + TAh’l)_l
0

tn—1

- ei(t"_lis)Ah’ (A,:l - A;l)eisfih ds Ah(l + TAhJ)il
2

(L4 T Ap) A, /

=:Ty 1 +T9p.

For I's 1, we use integration by parts to find

th—1

Tyy = (I+7Ah72)*1/ ’ A%e’(tnfl’s)Ah/(Agl—fl;l)e’s‘ih ds (I +7Ap1)7"
0

_ s= n—1

— (I +TAp2) Ay [ef(t"_lfs)Ah (A;I - A}Zl)eisAh} 0 ’ (I+7Ap1)""
(D2) t"2—1 P
- / Ao I (L 7 Ap ) THALT = AT 4 7 A a) e ds
0

— Ape AN Ay ) (A — A+ T A ) e A
+ AheitnilAh(I‘i’ TAhVQ)il(Agl o A;l)(l+ TAh,l)il'

where we inserted that the operators (I +7Ap )" and Ay, as well as Ay, and (I+7Ap1)"" commute
because of the commutativity of Ay, 1 and Ajp 2. Next, we state a bound for (I + TAh72)*1(A;1 -
Agl)(I + 7Ap1)" 1. First, we recall the definition A;, = (I + TAp1) AR + 7Ap2)" ! and find

(I +7An2) " (A = A+ 7ARa) " Pall o
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= |(I+7Ap) A I+ 7AL) T P — A5 Pl o

<+ 7AR) T A (U A+ 7AR) T = D) Pa| gy + (4 74R0) ™ = 1) APy
=7||(I+7An1) A Ap (T +7AR ) +7(|(I +TAp1)  Ana A Py
< CTHAh,lA;lPh <Cr,

||£(H)

PhHL(H) ||L(H)

HL(H)

where we inserted (I +7Ap 1)~ — 1 =7Ap1(I +7Ap1)" !, the commutativity of Ay 1 and A, as
well as Lemma 4.1 (ii). Then we can apply the semigroup bound (3.2) to find

IT2,1 Pall 2y

tn—1

< [T pe R U+ 7402 (A = AN+ 7)) Pl
0

x HeiSAhPhHL(H) ds

tn—1

2 AhPhHL(H)

tn—1

+}|Ah67 2 Ah’Ph

||L(H)||(IJr TAn2) (AL - ;1}:1)(] + TAhJ)ilPhHL(H)Hef
[ Ane ™ A P gy (T + 7 An2) TH AR = A7) T+ 7 AR 1) T Pal |2

tn—1

SCT/ i (tnfl—s)‘zderCtT +c—<cC
0

n—1 tn—l tn—l

T

We can use a similar argument to show that [|I'22 Py () < €. The difference is that in (D.2)
we use integration by parts but change the role of the two functions. Additionally, we need to apply
(3.2) for Ay,. This is possible since Ap, ; and Ap o are commutable and self-adjoint which implies
that Ay, is self-adjoint and therefore in particular sectorial. This shows that IT2Prll ey < Cr™

tn—1’

It remains to bound ||I's Py ||z (z). We begin to rewrite Sp,.+ as follows

Shr =T +TAp1) I+ 12441 Ap o) (I +7Ap )"
=T +7Ap1) (T +7451) T+ TAp2) = TA) I + TAp2) ' =1 - T4,

where we inserted the abbreviation A;, = (I+7Ap1) YA + 7Ap2)" ! in the last step. Then we
can bound |I'3 Pyl 2y as follows

I3 Pullecmy < [le™ 4Py — S 7P| , = |e=(r=DU=U=TA p, _ (T — TAh)"ﬂPhHL(H)-

L(H
In the case that Ay ; and Ap 2 are commutable and self-adjoint, we know that S’h,T =1—TAy, is
self-adjoint. Additionally, the eigenvalues of the operator are between 0 and 1, which can be deduced
from the proof of Lemma 4.2. Thus, applying the functional calculus theorem [7, Theorem 2.7.11(b)],
it will be sufficient in the following to find a bound for [e=(*=D1=2 _A\n=1| for X € [0,1]. To this
end, we denote g()\) := e~ (®~D01=Y) _ A\n=1 and will find ¢’s extrema for A € [0,1]. We note that
g(0) = e~ and g(1) = 0 are finite and will look for further local extrema of ¢ in the open interval
(0,1). The derivative of g is given by ¢'(\) = (n — 1)e=(»=DE=N _ (n — 1)A"~2. Setting this to
zero implies that every candidate ), for a local extremum fulfills e~ (*~D0=A) = X\n=2 First, we
assume that such a value \, is a maximum. Then we find

gOA) = e~ (DA _jn=l _ o=(r=DA-A) ) o=(n=D(A-A.)
.

< max e~ (DAY _ \em(nmDE=Y = pax (n—1)(1 = N)e~(n~DE=Y <
A€[0,1] xefo,1]n —1 tn_1
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as ze~¥ < 1 for all x € Rg. In case A, is a minimum, we argue in a similar way using that
minyepo,1 5 (n — 1)(1 — Ae~(=DA=A"> 0. This shows that [e”(*~DI-Y _ jyn=1| < _L_ g

fulfilled for all A € [0,1]. Altogether, we have showen that I's <

11.
12.
13.
14.
15.
16.
17.
18.
19.

20.

21.
22.
23.
24.

25.

O

tn—1"
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